Effect of naproxen on oxidative stress biomarkers in Gammarus pulex
Abstract
Non–steroidal anti–inflammatory drugs (NSAIDs) are a widely prescribed medication class that is used in the treatment of numerous conditions worldwide. Of these drugs, naproxen is the most commonly used NSAID. Following administration, non–steroidal anti–inflammatory drugs (NSAIDs) such as naproxen are eliminated from the body in either their original chemical form or as metabolites, ultimately entering the aquatic environment. The current study sought to show the impacts of naproxen on the oxidant/antioxidant status of Gammarus pulex, an aquatic invertebrate (Amphipoda). Gammarus pulex were exposed to sublethal concentrations of naproxen (3.44, 6.87 and 13.75 mg·L-1) for 96 hours (h). Whole body tissue samples were collected after 24, 48 and 96 h of exposure and analysed to determine the oxidant/antioxidant status by quantifying malondialdehyde (MDA) and total glutathione levels (GSH), and superoxide dismutase (SOD), and catalase (CAT) activities of the G. pulex. The level of MDA exhibited a remarkable increase, while the endogenous GSH level showed a significant depletion in tested whole body tissues in a time–dependent manner after naproxen treatment of G. pulex. In G. pulex exposed to the highest dose of naproxen; decreases in GSH activity, SOD and CAT activities were observed.The SOD activity did not show a discernible rise in statistics after 24 and 48 h of exposure, however, a difference was observed after 96 h compared to the control group (P<0.05). The findings of this study demonstrated the capacity of naproxen to initiate oxidative stress and elevate MDA levels in G. pulex, even at remarkably low concentrations. This study emphasizes that it is essential to develop effective methodologies to impede naproxen entry into the aquatic environment.
Downloads
References
Kunz PY, Kienle C, Gerhardt A. Gammarus spp. in aquatic ecotoxicology and water quality assessment: Toward integrated multilevel tests. In: Whitacre DM, editor. Reviews of environmental contamination and toxicology [Internet]. New York (NY): Springer; 2010. p. 1–76. RECT, Vol. 205. doi: https://doi.org/bq47wd
Bundschuh M, Zubrod JP, Klemm P, Elsaesser D, Stang C, Schulz R. Effects of peak exposure scenarios on Gammarus fossarum using field relevant pesticide mixtures. Ecotoxicol. Environ. Saf. [Internet]. 2013; 95:137–143. doi: https://doi.org/f3p449
Besse JP, Coquery M, Lopes C, Chaumot A, Budzinski H, Labadie P, Geffard O. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: Towards the determination of threshold values. Water Res. [Internet]. 2013; 47(2):650–660. doi: https://doi.org/f4kxnn
Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. [Internet]. 2021; 763:143038. doi: https://doi.org/gn4gkq
Alther R, Krähenbühl A, Bucher P, Altermatt F. Optimizing laboratory cultures of Gammarus fossarum (Crustacea: Amphipoda) as a study organism in environmental sciences and ecotoxicology. Sci. Total Environ. [Internet]. 2023; 855:158730. doi: https://doi.org/gzwgn8
Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Chaudhry RW, Akbar A. Effects of non–steroidal anti–inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: A narrative review. Cureus [Internet]. 2023; 15(4):e37080. doi: https://doi.org/ntfz
Zuberi MH, Haroon U, Bibi Y, Mehmood T, Mehmood I. Optimization of quantitative analysis of naproxin sodium using UV spectrophotometery in different solvent mediums. Am. J. Anal. Chem. [Internet]. 2014; 5(3):211–214. doi: https://doi.org/g8rqgm
Soltani N, Tavakkoli N, Mosavimanesh ZS, Davar F. Electrochemical determination of naproxen in the presence of acetaminophen using a carbon paste electrode modified with activated carbon nanoparticles. C. R. Chimie. [Internet]. 2018; 21(1):54–60. doi: https://doi.org/gc9mz6
Day RO, Graham GG. Non–steroidal anti–inflammatory drugs (NSAIDs). Br. J. Sports, Med. [Internet]. 2013; 47:1127. doi: https://doi.org/gcpzpp
Świacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non–target species: A review from the perspective of the aquatic environment. Environ. Pollut. [Internet]. 2020; 273(4):115891. doi: https://doi.org/gwcjr7
Li Q, Wang P, Chen L, Gao H, Wu L. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environ. Sci. Pollut. Res. [Internet]. 2016; 23(18):18832–18841. doi: https://doi.org/f86j43
Kwak K, Ji K, Kho Y, Kim P, Lee J, Ryu J, Choi K. Chronic toxicity and endocrine disruption of naproxen in freshwater water fleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere [Internet]. 2018; 204:156–162. doi: https://doi.org/gk3vsw
Yamindago A, Lee N, Woo S, Yum S. Transcriptomic profiling of Hydra magnipapillata after exposure to naproxen. Environ. Toxicol. Pharmacol. [Internet]. 2019; 71:103215. doi: https://doi.org/grghzv
Zhao Y, Hu L, Hou Y, Wang Y, Peng Y, Nie X. Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development and reproduction. Aquat. Toxicol. [Internet]. 2024; 266:106794. doi: https://doi.org/g8rqgn
Madhavan J, Grieser F, Ashokkumar M. Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J. Hazard. Mater. [Internet]. 2010; 178(1–3):202–208. doi: https://doi.org/b3fbr5
Gómez–Oliván LM. Non–steroidal anti–inflammatory drugs in water: Emerging contaminants and ecological impact [Internet]. Cham (Switzerland): Springer Nature; 2020. 337 p. HEC, Vol. 96. doi: https://doi.org/g8rqgp
Brutzkus JC, Shahrokhi M, Varacallo M. Naproxen [Internet]. Treasure Island (FL, USA): StatPearls Publishing; 2018 [cited 20 Apr. 2024]. PMID: 30247840. Available in: https://goo.su/J1TQF
Parolini M, Binelli A, Provini A. Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicol. Environ. Saf. [Internet]. 2011; 74(6):1586–1594. doi: https://doi.org/d4hmgk
Brandão FP, Pereira JL, Gonçalves F, Nunes B. The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea. Environ. Toxicol. [Internet]. 2014; 29(1):74–83. doi: https://doi.org/d9npn2
Gómez–Oliván LM, Galar–Martínez M, García–Medina S, Valdés–Alanís A, Islas–Flores H, Neri–Cruz N. Genotoxic response and oxidative stress induced by diclofenac, ibuprofen and naproxen in Daphnia magna. Drug Chem. Toxicol. [Internet]. 2014; 37(4):391–399. doi: https://doi.org/g8rqgq
García–Medina AL, Galar–Martínez M, García–Medina S, Gómez–Oliván LM, Razo–Estrada C. Naproxen–enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water Air Soil Pollut. [Internet]. 2015; 226(195):1–10. doi: https://doi.org/gwbcjr
Serdar O. The effect of dimethoate pesticide on some biochemical biomarkers in Gammarus pulex. Environ. Sci. Pollut. Res. [Internet]. 2019; 26(21):21905–21914. doi: https://doi.org/gwcp4w
Yildirim NC, Ak TP, Samasas O. Toxicological effects of di–(2–ethylhexyl) phthalate in Gammarus pulex: a biochemical and histopathological assessment. Environ. Sci. Pollut. Res. [Internet]. 2021; 28(32):44442–44451. doi: https://doi.org/gv5xst
Hughes JG, Chisholm DR, Whiting A, Girkin JM, Ambler CA. Bullseye analysis: A fluorescence microscopy technique to detect local changes in intracellular Reactive Oxygen Species (ROS) production. Microsc. Microanal. [Internet]. 2023; 29(2):529–539. doi: https://doi.org/g8rqgr
Manduzio H, Rocher B, Durand F, Galap C, Leboulenger F. The point about oxidative stress in molluscs. Invertebrate Surviv. J. [Internet] 2005 [cited 25 Jun. 2024]; 2(2):91–104. Available in: https://goo.su/Cs7k2H
Maltby L, Clayton SA, Wood RM, McLoughlin N. Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness, and relevance. Environ. Toxicol. Chem. [Internet]. 2002; 21(2):361–368. doi: https://doi.org/cxcjqf
Charles J, Crini G, Degiorgi F, Sancey B, Morin–Crini N, Badot PM. Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environ. Sci. Pollut. Res. [Internet]. 2014; 21(2):1099–1111. doi: https://doi.org/f5nqk2
Aydin AN, Serdar O, Çiçek–Çimen IC. Determination of oxidative stress responses induced by copper oxide (CuO) nanoparticle in Gammarus pulex. Res. Sq. [Preprint]. 2024 [cited 25 Jun. 2024]: [16 p.]. doi: https://doi.org/g8rqgs
Yildirim NC, Serdar O, Derman T. Individual and combined toxicity of polycyclic aromatic hydrocarbons phenanthrene and fluoranthene in freshwater amphipod Gammarus pulex (L., 1758) (Amphipoda: Gammaridae). Acta Zool. Bulg. [Internet] 2023 [cited 28 Jun. 2024]; 75(3):387–394. Available in: https://goo.su/TAciiX
Shahid N, Siddique A, Liess M. Predicting the combined effects of multiple stressors and stress adaptation in Gammarus pulex. Environ. Sci. Technol. [Internet]. 2024; 58(29):12899–12908. doi: https://doi.org/g8rqgt
AstraZeneca. Naproxen acid: Acute toxicity to Gammarus pulex. Report BL8099/B. Devon (UK): Brixham Environmental Laboratory; 2005.
Huntjens DRH, Spalding DJM, Danhof M, Della Pasqua OE. Correlation between in vitro and in vivo concentration–effect relationships of naproxen in rats and healthy volunteers. Br. J. Pharmacol. [Internet]. 2006; 148(4):396–404. doi: https://doi.org/bkmzsg
Ohkawa H, Ohishi, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. [Internet]. 1979; 95(2):351–358. doi: https://doi.org/bktx4x
Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. [Internet]. 1959; 82(1):70–77. doi: https://doi.org/bz2vt8
Aebi H. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic análisis. [Internet]. 2nd ed. Vol. 2. London: Academic Press; 1984. p. 673–684. https://doi.org/gj9cbj
Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. [Internet]. 1971; 44(1):276–287. doi: https://doi.org/c8mb2f
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. [Internet]. 1951; 193(1):265–275. doi: https://doi.org/ghv6nr
Tripathi G, Verma P. Fenvalerate–induced changes in a catfish, Clarias batrachus: metabolic enzymes, RNA and protein. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2004; 138(1):75–79. doi: https://doi.org/bw4cg6
Gagné F, Blaise C, Fournier M, Hansen PD. Effects of selected pharmaceutical products on phagocytic activity in Elliptio complanata mussels. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2006; 143(2):179–186. doi: https://doi.org/cr38h3
Contardo–Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C. Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol. [Internet]. 2011; 105(3–4):428–437. doi: https://doi.org/bnmgtf
Oliveira LL, Antunes SC, Gonçalves F, Rocha O, Nunes B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol. Environ. Saf. [Internet]. 2015; 119:123–131. doi: https://doi.org/f7hjcq
Dellali M, Douggui A, Harrath AH, Mansour L, Alwasel S, Beyrem H, Gyedu–Ababio T, Rohal–Lupher M, Boufahja F. Acute toxicity and biomarker responses in Gammarus locusta amphipods exposed to copper, cadmium, and the organochlorine insecticide dieldrin. Environ. Sci. Pollut. Res. [Internet]. 2021; 28(27):36523–36534. doi: https://doi.org/gwhznv
García–Medina AL, Galar–Martínez M, García–Medina S, Gómez–Oliván LM, Razo–Estrada C. Naproxen–enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water Air Soil Pollut. [Internet]. 2015; 226(6):195–110. doi: https://doi.org/gwbcjr
Gutteridge JM. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalyzed by iron salts. FEBS Lett. [Internet]. 1982; 150(2):454–458. doi: https://doi.org/bg6kr8
Aguirre–Martínez GV, DelValls AT, Martín–Díaz ML. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774). Ecotoxicol. Environ. Saf. [Internet]. 2015; 120:142–154. doi: https://doi.org/f7msqx
Mathias FT, Fockink DH, Disner GR, Prodocimo V, Ribas JLC, Ramos LP, Cestari MM, de Assis HCS. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environ. Toxicol. Pharmacol. [Internet]. 2018; 59:105–113. doi: https://doi.org/gdk7ds
Quinn B, Schmidt W, O’Rourke K, Hernan R. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere [Internet]. 2011; 84(5):657–663. doi: https://doi.org/cf5n6s
Wang L, Peng Y, Nie X, Pan B, Ku P, Bao S. Gene response of CYP360A, CYP314, and GST and whole–organism changes in Daphnia magna exposed to ibuprofen. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2016; 179:49–56. doi: https://doi.org/f74rh3
Cong B, Liu C, Wang L, Chai Y. The impact on antioxidant enzyme activity and related gene expression following adult zebrafish (Danio rerio) exposure to dimethyl phthalate. Animals [Internet]. 2020; 10(4):717. doi: https://doi.org/g7ssd4
Guiloski IC, Ribas JLC, Piancini LDS, Dagostim AC, Cirio SM, Fávaro LF, Boschen SL, Cestari MM, da Cunha C, de Assis HCS. Paracetamol causes endocrine disruption and hepatotoxicity in male fish Rhamdia quelen after subchronic exposure. Environ. Toxicol. Pharmacol. [Internet]. 2017; 53:111–120. doi: https://doi.org/gbshgh
Davies KJA. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life [Internet]. 2008; 50(4–5):279–289. doi: https://doi.org/drjnbb
Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M, Blahova J, Bartoskova M, Marsalek P, Skoric M, Svobodova Z. Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuro Endocrinol. Lett. [Internet] 2013 [cited 25 Jul. 2023]; 34(Suppl. 2):116– 122. PMID: 24362103. Available in: https://goo.su/TYQcHj
Yildirim NC, Serdar O, Basaran S. The use of Gammarus pulex as a model organism for ecotoxicological assessment of ibuprofen and propranolol at environmental relevant concentrations. Int. J. Environ. Health Res. [Internet]. 2022; 32(11):2385–2395. doi: https://doi.org/g8rqgw
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Freitas R, Solé M. The influence of climate change related on the response of two clam species to diclofenac. Ecotoxicol. Environ. Saf. [Internet]. 2019; 189:109899. doi: https://doi.org/gmqc5s
Pawłowska B, Telesiński A, Biczak R. Effect of diclofenac and naproxen and their mixture on spring barley seedlings and Heterocypris incongruens. Environ. Toxicol. Pharmacol. [Internet]. 2021; 88:103746. doi: https://doi.org/grgh66
Nunes B, Daniel D, Canelas GG, Barros J, Correia AT. Toxic effects of environmentally realistic concentrations of diclofenac in organisms from two distinct trophic levels, Hediste diversicolor and Solea senegalensis. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2020; 231:108722. doi: https://doi.org/g8rqgx
Trombini C, Kazakova J, Villar–Navarro M, Hampel M, Fernández–Torres R, Bello–López MÁ, Blasco J. Bioaccumulation and biochemical responses in the peppery furrow shell Scrobicularia plana exposed to a pharmaceutical cocktail at sub–lethal concentrations. Ecotoxicol. Environ. Saf. [Internet]. 2022; 242:113845. doi: https://doi.org/gwgn6w
Ahmad MH, Fatima M, Hossain M, Mondal AC. Evaluation of naproxen–induced oxidative stress, hepatotoxicity and in–vivo genotoxicity in male Wistar rats. J. Pharm. Anal. [Internet]. 2018; 8(6):400–406. doi: https://doi.org/g8rqgz
Benhar M. Oxidants, antioxidants and thiol redox switches in the control of regulated cell death pathways. Antioxidants [Internet]. 2020; 9(4):309. doi: https://doi.org/gps3z7
Copyright (c) 2024 Engin Seker
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.