Preparación y caracterización de formulaciones liposomales de levamisol y albendazol utilizadas en medicina veterinaria
Resumen
El objetivo de este estudio es convertir albendazol y levamisol, fármacos antiparasitarios utilizados tanto en humanos como en animales, en formulaciones liposomales en condiciones de laboratorio. Para comprobar la circunstancia en la práctica, se realizaron además estudios de caracterización. El estudio se realizó modificando la hidratación de la fina película lipídica. Se realizaron experimentos con fosfatidilcolina de huevo, colesterol, cloroformo y metanol en diferentes cantidades. Se realizaron formulaciones de albendazol y levamisol con las sustancias utilizadas en los liposomas. Como parte de los estudios de caracterización se realizaron mediciones del potencial zeta, el índice de polidispersidad, la eficacia de encapsulación, el tamaño de partícula y la microscopía electrónica de barrido. Los resultados muestran que Lipo LVM tiene el valor de tamaño de partícula más pequeño con 380,87 ± 19,52 nm, mientras que Lipo LVM–PBS tiene el valor de tamaño de partícula más grande con 7236,67 ± 443,89 nm. Los valores del índice de polidispersidad se sitúan entre 0,527 y 0,896. Por otra parte, los niveles de potencial zeta oscilan entre -7,6 mV y -46,8 mV. Mientras que este valor se determinó como -8,2 ± 0,4 mV en LD Lipo ABZ y -18,4 ± 0,6 mV en HD Lipo ABZ, respectivamente. Tanto HD Lipo ABZ como LD Lipo ABZ tienen índices de polidispersidad para ABZ de 0,529 ± 0,066 y 0,896 ± 0,085, respectivamente. Se observó que el tamaño de partícula aumentaba a medida que aumentaba la cantidad deseada de albendazol liposomal. Se comprobó que la liposomización del albendazol era mayor que la del levamisol. En la investigación se desarrollaron con éxito formulaciones liposomales de albendazol y levamisol. Al realizar estudios de caracterización, se descubrió que pueden emplearse en ensayos clínicos. Se prevé que en los próximos años la investigación continua en el campo de la nanotecnología mejore la salud humana y animal y ayude a controlar más eficazmente las infestaciones parasitarias.
Descargas
Citas
Sharma L, Jagadısh S, Mulbagal A. Effect of haemorrhagic septicaemia vaccination and levamisole administration on the humoral response in cross–bred calves. J. Vet. Pharmacol. Ther. [Internet]. 1990; 13(1):23–28. doi: https://doi.org/dccb27
Cihan M, Özaydın İ, Özba B, Baran V. Clinical effects of levamisole in bovine papillomatosis. Indian Vet. J. 2004; 81(3):321–323.
Renoux G. The general immunopharmacology of levamisole. Drugs. [Internet] 1980; 20:89–99. doi: https://doi.org/ctkjxm
Sharma S, Abuzar S. The benzimidazole anthelmintics—chemistry and biological activity. In: Jucker E, editor. Progress in Drug Research. Vol. 27. [Internet]. Basel (CH): Birkhäuser Verlag; 1983. p. 85–161. doi: https://doi.org/fxs82z
Albanese G, Venturi C. Albendazole: a new drug for human parasitoses. Dermatol. Clin. [Internet]. 2003; 21(2):283–290. doi: https://doi.org/fw4b5q
Liu W, Hou Y, Jin Y, Wang Y, Xu X, Han J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. [Internet]. 2020; 104:177–189. doi: https://doi.org/gq8wd2
Barroso L, Viegas C, Vieira J, Ferreira–Pêgo C, Costa J, Fonte P. Lipid–based carriers for food ingredients delivery. J. Food Eng. [Internet]. 2021; 295:110451. doi: https://doi.org/m7xw
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. [Internet]. 2005; 4:145–160. doi: https://doi.org/dgh7x8
Santos–Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev. [Internet]. 2010; 62(4–5):560–575. doi: https://doi.org/fdwf86
Naeem S, Kiew LV, Chung LY, Fui KS, Misran MB. A Comparative approach for the preparation and physicochemical characterization of lecithin liposomes using chloroform and non–halogenated solvents. J. Surfact. Deterg. [Internet]. 2015; 18:579–587. doi: https://doi.org/f7fs87
Khoshneviszadeh R, Fazly Bazzaz BS, Housaindokht MR, Ebrahim–Habibi A, Rajabi O. UV spectrophotometric determination and validation of hydroquinone in liposome. Iran. J. Pharm. Res. [Internet]. 2015 [cited 15 Feb 2024]; 14(2):473–478. Available in: https://goo.su/2eJKTH. PubMed Central PMCID: PMC4403063.
Ahmad MI, Kumar P, Singh S, Kumar N. Method development and characterization of liposomal formulation of ısotretinoin. Borneo J. Pharm. [Internet]. 2021; 4(2):117–127. doi: https://doi.org/m7xx
Wang FC, Acevedo N, Marangoni AG. Encapsulation of phytosterols and phytosterol esters in liposomes made with soy phospholipids by high pressure homogenization. Food Funct. [Internet]. 2017; 8(11):3964–3969. doi: https://doi.org/gjn6b8
Wang S, Chen Y, Guo J, Huang Q. Liposomes for tumor targeted therapy: A review. Int. J. Mol. Sci. [Internet]. 2023; 24(3):2643. doi: https://doi.org/gsd5s5
Hu CMJ, Zhang L. Nanoparticle–based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. [Internet]. 2012; 83(8):1104–1111. doi: https://doi.org/fzws4c
Çoban Ö, Yıldırım S, Bakır T. Alpha–lipoic acid and Cyanocobalamin Co–Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability. J. Pharm. Innov. [Internet]. 2021; 17(2):510–520. doi: https://doi.org/m7xz
Çoban Ö, Barut B, Yalçın CÖ, Özel A, Bıyıklıoğlu Z. Development and in vitro evaluation of BSA–coated liposomes containing Zn (II) phthalocyanine–containing ferrocene groups for photodynamic therapy of lung cancer. J. Organomet. Chem. [Internet]. 2020; 925:121469. doi: https://doi.org/m7x2
Akbarzadeh A, Rezaei–Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati–Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. [Internet]. 2013; 8(1):102. doi: https://doi.org/f4qfjh
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem. Rev. [Internet]. 2015; 115(19):10938–10966. doi: https://doi.org/ggzm94
Liu R, Xie Y, Xu JR, Luo Q, Ren YX, Chen M, Duan JL, Bao CJ, Liu YX, Li PS, Li JW, Wang GL, Lu WL. Engineered stem cell biomimetic liposomes carrying levamisole for macrophage immunity reconstruction in leukemia therapy. Chem. Eng. J [Internet]. 2022; 447:137582. doi: https://doi.org/m7x3
Fülöp V, Jakab G, Bozó T, Tóth B, Endrésik D, Balogh E, Kellermayer M, Antal I. Study on the dissolution improvement of albendazole using reconstitutable dry nanosuspension formulation. Eur. J. Pharm. Sci. [Internet]. 2018; 123:70–78. doi: https://doi.org/gd7jcw
Zhang H, Zhao J, Chen B, Ma Y, Li Z, Shou X, Wen L, Yuan Y, Gao H, Ruan J, Li H, Lu S, Gong Y, Wang J, Wen H. Pharmacokinetics and tissue distribution study of liposomal albendazole in naturally Echinococcus granulosus infected sheep by a validated UPLC–Q–TOF–MS method. J. Chromatogr. B [Internet]. 2020; 1141:122016. doi: https://doi.org/m7zh
Torrens F, Castellano G, Campos A, Abad C. Negatively cooperative binding of melittin to neutral phospholipid vesicles. J. Mol. Struct. [Internet]. 2007; 834–836:216–228. doi: https://doi.org/dwwr5j
Matos C, de Castro B, Gameiro P, Lima JLFC, Reis S. Zeta–potential measurements as a tool to quantify the effect of charged drugs on the surface potential of egg phosphatidylcholine liposomes. Langmuir. [Internet]. 2004; 20(2):369–377. doi: https://doi.org/fjfd8b
Soema PC, Willems GJ, Jiskoot W, Amorij JP, Kersten GF. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome–induced dendritic cell maturation using a design of experiments approach. Eur. J. Pharm. Biopharm. [Internet]. 2015; 94:427–435. doi: https://doi.org/f7ng3w
Kotyńska J, Naumowicz M. Theoretical considerations and the microelectrophoresis experiment on the influence of selected chaotropic anions on phosphatidylcholine membrane surface charge density. Molecules. [Internet]. 2020; 25(1):132 doi: https://doi.org/gmtg3z
Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. [Internet]. 2017; 409(24):5779–5787. doi: https://doi.org/gbwdrr
Kotyńska J, Figaszewski Z. Adsorption equilibria between liposome membrane formed of phosphatidylcholine and aqueous sodium chloride solution as a function of pH. Biochim Biophys Acta. [Internet]. 2005; 1720(1–2):22–27. doi: https://doi.org/dztbhv
Brgles M, Jurasin D, Sikirić MD, Frkanec R, Tomasić J. Entrapment of ovalbumin into liposomes—factors affecting entrapment efficiency, liposome size, and zeta potential. J. Liposome Res. [Internet]. 2008; 18(3):235–248. doi: https://doi.org/cf93gd
Matsumura H, Watanabe K, Furusawa K. Flocculation behavior of egg phosphatidylcholine liposomes caused by Ca2+ ions. Colloids Surf. [Internet]. 1995; 98(1–2):175–184. doi: https://doi.org/fhpf2c
Wang X, Swing CJ, Feng T, Xia S, Yu J, Zhang X. Effects of environmental pH and ionic strength on the physical stability of cinnamaldehyde–loaded liposomes. J. Dispers. Sci. Technol. [Internet]. 2020; 41(10):1568–1575. doi: https://doi.org/m7x5
Sai VL. Extraction of cinnamaldehyde from cinnamomum zeylanicum. Int. Res. J. Mod. Eng. Technol. Sci. [Internet] 2020 [cited 12 Jan 2024]; 2(7):185–187. Available in: https://goo.su/rT6BT
Zhili L, Rao F, Song S, Uribe–Salas A, López–Valdivieso A. Effects of common ions on adsorption and flotation of malachite with salicylaldoxime. Colloids Surf. A [Internet]. 2019; 577:421–428. doi: https://doi.org/m7zp
Arifin DR, Palmer AF. Determination of size distribution and encapsulation efficiency of liposome–encapsulated hemoglobin blood substitutes using asymmetric flow field–flow fractionation coupled with multi–angle static light scattering. Biotechnol. Prog. [Internet]. 2003; 19(6):1798–1811. doi: https://doi.org/ftxppn
Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Róg T, Bunker A. Cholesterol level affects surface charge of lipid membranes in saline solution. Sci. Rep. [Internet]. 2014; 4:5005. doi: https://doi.org/gprscj
Katragadda AK, Singh M, Betageri GV. Encapsulation, Stability, and In Vitro Release Characteristics of Liposomal Formulations of Stavudine (D4T). Drug Deliv. [Internet]. 1999; 6(1):31–37. doi: https://doi.org/b9v2pn
Chen D, Xia D, Li X, Zhu Q, Yu H, Zhu C, Gan Y. Comparative study of Pluronic® F127–modified liposomes and chitosan–modified liposomes for mucus penetration and oral absorption of Cyclosporine A in rats. Int. J. Pharm. [Internet]. 2013; 449(1–2):1–9. doi: https://doi.org/f4vzn5
Pensel PE, Ullio Gamboa G, Fabbri J, Ceballos L, Sanchez Bruni S, Alvarez LI, Allemandi D, Benoit JP, Palma SD, Elissondo MC. Cystic echinococcosis therapy: Albendazole–loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop. [Internet]. 2015; 152:185–194. doi: https://doi.org/f7zrps
Ergin AD, Uner B. Characterization, optimization, and in vitro evaluation of cholesterol–free liposomes. J. Drug Deliv. Sci. Technol. [Internet]. 2023; 84:104468. doi: https://doi.org/m7x6
Zhang Y, Wong CYJ, Gholizadeh H, Aluigi A, Tiboni M, Casettari L, Young P, Traini D, Li M, Cheng S, Ong HX. Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model. Int. J. Pharm. [Internet]. 2023; 635:122667. doi: https://doi.org/gtggj5
Reigada C, Digirolamo F, Galceran F, Sayé M, Carrillo C, Torres P, Cammarata A, Glisoni RJ, Labadie G, Miranda MR, Pereira CA. Trypanocidal activity of liposomal isotretinoin and loratadine formulations. J. Drug Deliv. Sci. Technol. [Internet]. 2024; 91:105241. doi: https://doi.org/m7x7
Derechos de autor 2024 Hasan Susar, Murat Çelebi, Çağla Çelebi, Özlem Çoban, Hüseyin Şen, İzzet Karahan
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.