Preparation and Characterisation of Liposomal Formulations of Levamisole and Albendazole Used in Veterinary Medicine
Abstract
The aim of this study is to by converting albendazole and levamisole, which are antiparasitic drugs used in both humans and animals, into liposomal formulations under laboratory conditions. To ascertain the circumstance in practice, characterization studies were additionally conducted. The study was performed by modifying the hydration of the thin lipid film. Experiments were carried out with egg phosphatidylcholine, cholesterol, chloroform and methanol in different amounts. Albendazole and levamisole formulations were made with the substances used in liposomes. Zeta potential, polydispersity index, encapsulation efficiency, particle size measurements and scanning electron microscopy were performed as part of characterization studies. The results show that Lipo LVM has the smallest particle size value at 380.87 ± 19.52 nm, whereas Lipo LVM–PBS has the largest particle size value at 7236.67 ± 443.89 nm. Values for the polydispersity index fall between 0.527 and 0.896. Zeta potential levels, on the other hand, range from -7.6 mV to -46.8 mV. While this value was determined as -8.2 ± 0.4 mV in LD Lipo ABZ and -18.4 ± 0.6 mV in HD Lipo ABZ, respectively. Both HD Lipo ABZ and LD Lipo ABZ have polydispersity indices for ABZ of 0.529 ± 0.066 and 0.896 ± 0.085, respectively. It was found that the particle size rose as the desired amount of liposomal albendazole increased. It was found that the liposomization of albendazole was higher than that of levamisole. Albendazole and levamisole liposomal formulations were successfully developed in the investigation. By carrying out characterization studies, it was discovered that it may be employed in clinical trials. In the upcoming years, it is anticipated that continuous research in the field of nanotechnology will improve human and animal health and aid to more effectively control parasite infestations.
Downloads
References
Sharma L, Jagadısh S, Mulbagal A. Effect of haemorrhagic septicaemia vaccination and levamisole administration on the humoral response in cross–bred calves. J. Vet. Pharmacol. Ther. [Internet]. 1990; 13(1):23–28. doi: https://doi.org/dccb27
Cihan M, Özaydın İ, Özba B, Baran V. Clinical effects of levamisole in bovine papillomatosis. Indian Vet. J. 2004; 81(3):321–323.
Renoux G. The general immunopharmacology of levamisole. Drugs. [Internet] 1980; 20:89–99. doi: https://doi.org/ctkjxm
Sharma S, Abuzar S. The benzimidazole anthelmintics—chemistry and biological activity. In: Jucker E, editor. Progress in Drug Research. Vol. 27. [Internet]. Basel (CH): Birkhäuser Verlag; 1983. p. 85–161. doi: https://doi.org/fxs82z
Albanese G, Venturi C. Albendazole: a new drug for human parasitoses. Dermatol. Clin. [Internet]. 2003; 21(2):283–290. doi: https://doi.org/fw4b5q
Liu W, Hou Y, Jin Y, Wang Y, Xu X, Han J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. [Internet]. 2020; 104:177–189. doi: https://doi.org/gq8wd2
Barroso L, Viegas C, Vieira J, Ferreira–Pêgo C, Costa J, Fonte P. Lipid–based carriers for food ingredients delivery. J. Food Eng. [Internet]. 2021; 295:110451. doi: https://doi.org/m7xw
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. [Internet]. 2005; 4:145–160. doi: https://doi.org/dgh7x8
Santos–Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev. [Internet]. 2010; 62(4–5):560–575. doi: https://doi.org/fdwf86
Naeem S, Kiew LV, Chung LY, Fui KS, Misran MB. A Comparative approach for the preparation and physicochemical characterization of lecithin liposomes using chloroform and non–halogenated solvents. J. Surfact. Deterg. [Internet]. 2015; 18:579–587. doi: https://doi.org/f7fs87
Khoshneviszadeh R, Fazly Bazzaz BS, Housaindokht MR, Ebrahim–Habibi A, Rajabi O. UV spectrophotometric determination and validation of hydroquinone in liposome. Iran. J. Pharm. Res. [Internet]. 2015 [cited 15 Feb 2024]; 14(2):473–478. Available in: https://goo.su/2eJKTH. PubMed Central PMCID: PMC4403063.
Ahmad MI, Kumar P, Singh S, Kumar N. Method development and characterization of liposomal formulation of ısotretinoin. Borneo J. Pharm. [Internet]. 2021; 4(2):117–127. doi: https://doi.org/m7xx
Wang FC, Acevedo N, Marangoni AG. Encapsulation of phytosterols and phytosterol esters in liposomes made with soy phospholipids by high pressure homogenization. Food Funct. [Internet]. 2017; 8(11):3964–3969. doi: https://doi.org/gjn6b8
Wang S, Chen Y, Guo J, Huang Q. Liposomes for tumor targeted therapy: A review. Int. J. Mol. Sci. [Internet]. 2023; 24(3):2643. doi: https://doi.org/gsd5s5
Hu CMJ, Zhang L. Nanoparticle–based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. [Internet]. 2012; 83(8):1104–1111. doi: https://doi.org/fzws4c
Çoban Ö, Yıldırım S, Bakır T. Alpha–lipoic acid and Cyanocobalamin Co–Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability. J. Pharm. Innov. [Internet]. 2021; 17(2):510–520. doi: https://doi.org/m7xz
Çoban Ö, Barut B, Yalçın CÖ, Özel A, Bıyıklıoğlu Z. Development and in vitro evaluation of BSA–coated liposomes containing Zn (II) phthalocyanine–containing ferrocene groups for photodynamic therapy of lung cancer. J. Organomet. Chem. [Internet]. 2020; 925:121469. doi: https://doi.org/m7x2
Akbarzadeh A, Rezaei–Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati–Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. [Internet]. 2013; 8(1):102. doi: https://doi.org/f4qfjh
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem. Rev. [Internet]. 2015; 115(19):10938–10966. doi: https://doi.org/ggzm94
Liu R, Xie Y, Xu JR, Luo Q, Ren YX, Chen M, Duan JL, Bao CJ, Liu YX, Li PS, Li JW, Wang GL, Lu WL. Engineered stem cell biomimetic liposomes carrying levamisole for macrophage immunity reconstruction in leukemia therapy. Chem. Eng. J [Internet]. 2022; 447:137582. doi: https://doi.org/m7x3
Fülöp V, Jakab G, Bozó T, Tóth B, Endrésik D, Balogh E, Kellermayer M, Antal I. Study on the dissolution improvement of albendazole using reconstitutable dry nanosuspension formulation. Eur. J. Pharm. Sci. [Internet]. 2018; 123:70–78. doi: https://doi.org/gd7jcw
Zhang H, Zhao J, Chen B, Ma Y, Li Z, Shou X, Wen L, Yuan Y, Gao H, Ruan J, Li H, Lu S, Gong Y, Wang J, Wen H. Pharmacokinetics and tissue distribution study of liposomal albendazole in naturally Echinococcus granulosus infected sheep by a validated UPLC–Q–TOF–MS method. J. Chromatogr. B [Internet]. 2020; 1141:122016. doi: https://doi.org/m7zh
Torrens F, Castellano G, Campos A, Abad C. Negatively cooperative binding of melittin to neutral phospholipid vesicles. J. Mol. Struct. [Internet]. 2007; 834–836:216–228. doi: https://doi.org/dwwr5j
Matos C, de Castro B, Gameiro P, Lima JLFC, Reis S. Zeta–potential measurements as a tool to quantify the effect of charged drugs on the surface potential of egg phosphatidylcholine liposomes. Langmuir. [Internet]. 2004; 20(2):369–377. doi: https://doi.org/fjfd8b
Soema PC, Willems GJ, Jiskoot W, Amorij JP, Kersten GF. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome–induced dendritic cell maturation using a design of experiments approach. Eur. J. Pharm. Biopharm. [Internet]. 2015; 94:427–435. doi: https://doi.org/f7ng3w
Kotyńska J, Naumowicz M. Theoretical considerations and the microelectrophoresis experiment on the influence of selected chaotropic anions on phosphatidylcholine membrane surface charge density. Molecules. [Internet]. 2020; 25(1):132 doi: https://doi.org/gmtg3z
Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. [Internet]. 2017; 409(24):5779–5787. doi: https://doi.org/gbwdrr
Kotyńska J, Figaszewski Z. Adsorption equilibria between liposome membrane formed of phosphatidylcholine and aqueous sodium chloride solution as a function of pH. Biochim Biophys Acta. [Internet]. 2005; 1720(1–2):22–27. doi: https://doi.org/dztbhv
Brgles M, Jurasin D, Sikirić MD, Frkanec R, Tomasić J. Entrapment of ovalbumin into liposomes—factors affecting entrapment efficiency, liposome size, and zeta potential. J. Liposome Res. [Internet]. 2008; 18(3):235–248. doi: https://doi.org/cf93gd
Matsumura H, Watanabe K, Furusawa K. Flocculation behavior of egg phosphatidylcholine liposomes caused by Ca2+ ions. Colloids Surf. [Internet]. 1995; 98(1–2):175–184. doi: https://doi.org/fhpf2c
Wang X, Swing CJ, Feng T, Xia S, Yu J, Zhang X. Effects of environmental pH and ionic strength on the physical stability of cinnamaldehyde–loaded liposomes. J. Dispers. Sci. Technol. [Internet]. 2020; 41(10):1568–1575. doi: https://doi.org/m7x5
Sai VL. Extraction of cinnamaldehyde from cinnamomum zeylanicum. Int. Res. J. Mod. Eng. Technol. Sci. [Internet] 2020 [cited 12 Jan 2024]; 2(7):185–187. Available in: https://goo.su/rT6BT
Zhili L, Rao F, Song S, Uribe–Salas A, López–Valdivieso A. Effects of common ions on adsorption and flotation of malachite with salicylaldoxime. Colloids Surf. A [Internet]. 2019; 577:421–428. doi: https://doi.org/m7zp
Arifin DR, Palmer AF. Determination of size distribution and encapsulation efficiency of liposome–encapsulated hemoglobin blood substitutes using asymmetric flow field–flow fractionation coupled with multi–angle static light scattering. Biotechnol. Prog. [Internet]. 2003; 19(6):1798–1811. doi: https://doi.org/ftxppn
Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Róg T, Bunker A. Cholesterol level affects surface charge of lipid membranes in saline solution. Sci. Rep. [Internet]. 2014; 4:5005. doi: https://doi.org/gprscj
Katragadda AK, Singh M, Betageri GV. Encapsulation, Stability, and In Vitro Release Characteristics of Liposomal Formulations of Stavudine (D4T). Drug Deliv. [Internet]. 1999; 6(1):31–37. doi: https://doi.org/b9v2pn
Chen D, Xia D, Li X, Zhu Q, Yu H, Zhu C, Gan Y. Comparative study of Pluronic® F127–modified liposomes and chitosan–modified liposomes for mucus penetration and oral absorption of Cyclosporine A in rats. Int. J. Pharm. [Internet]. 2013; 449(1–2):1–9. doi: https://doi.org/f4vzn5
Pensel PE, Ullio Gamboa G, Fabbri J, Ceballos L, Sanchez Bruni S, Alvarez LI, Allemandi D, Benoit JP, Palma SD, Elissondo MC. Cystic echinococcosis therapy: Albendazole–loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop. [Internet]. 2015; 152:185–194. doi: https://doi.org/f7zrps
Ergin AD, Uner B. Characterization, optimization, and in vitro evaluation of cholesterol–free liposomes. J. Drug Deliv. Sci. Technol. [Internet]. 2023; 84:104468. doi: https://doi.org/m7x6
Zhang Y, Wong CYJ, Gholizadeh H, Aluigi A, Tiboni M, Casettari L, Young P, Traini D, Li M, Cheng S, Ong HX. Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model. Int. J. Pharm. [Internet]. 2023; 635:122667. doi: https://doi.org/gtggj5
Reigada C, Digirolamo F, Galceran F, Sayé M, Carrillo C, Torres P, Cammarata A, Glisoni RJ, Labadie G, Miranda MR, Pereira CA. Trypanocidal activity of liposomal isotretinoin and loratadine formulations. J. Drug Deliv. Sci. Technol. [Internet]. 2024; 91:105241. doi: https://doi.org/m7x7
Copyright (c) 2024 Hasan Susar, Murat Çelebi, Çağla Çelebi, Özlem Çoban, Hüseyin Şen, İzzet Karahan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.