Una evaluación de los niveles de Nesfatin–1 en ovejas Awassi según el tipo de parto
Resumen
El proceso fisiológico del nacimiento puede provocar estrés en los animales porque afecta a muchos mecanismos. El objetivo de este estudio fue determinar el efecto del modo de nacimiento sobre el nivel de Nesfatin–1 y explicar la relación con los parámetros de estrés oxidativo en ovejas de raza Awassi. El estudio incluyó un total de 60 ovejas con un parto único en 3 grupos: Grupo 1 (n:20) que incluye animales que tuvieron un parto normal, Grupo 2 (n:20) que tuvo un parto difícil (distocia) y Grupo 3. (n:20) incluyendo ovejas que dieron a luz por cesárea. Se tomaron muestras de sangre de las ovejas en todos los grupos dentro de los 10 minutos posteriores al nacimiento, para medir la Nesfatina–1, la capacidad antioxidante total (TAS) y la capacidad oxidante total (TOS). Los datos obtenidos fueron examinados con Análisis de Varianza Unidireccional y las relaciones entre los datos con la prueba de Pearson. Se determinaron diferencias estadísticamente significativas entre los grupos con respecto a los niveles de Nesfatin–1, TAS, TOS y el índice de estrés oxidativo (OSI) (P<0,001). Se determinó que los niveles de Nesfatin–1, TOS y OSI eran más bajos en el grupo de parto normal y más altos en el grupo de parto por cesárea (P<0,001). El nivel de TAS fue más alto en el grupo de parto normal y más bajo en el grupo de parto por cesárea (P<0,001). Se determinó una correlación negativa significativa entre Nesfatin–1 y TAS (r =-0,932, P<0,001), y una correlación positiva significativa entre Nesfatin–1 y TOS, y entre Nesfatin–1 y OSI (r =0,957, P<0,001; r=0,960, P<0,001, respectivamente). Estos resultados demostraron una diferencia significativa en el nivel de Nesfatin–1 según el modo de nacimiento. Por tanto, Nesfatin–1 podría ser un nuevo biomarcador en la determinación del estrés oxidativo en ovejas según el modo de nacimiento, y se concluyó que una de las intervenciones que disminuirían el estrés oxidativo tras distocia y partos por cesárea sería proporcionar un aumento en Nesfatin–1 endógeno debido a su propiedad antioxidante.
Descargas
Citas
Essmeyer K. Aufklärung der Ursachen einer erhöhten Häufigkeit von Totgeburten in einem Milchviehbetrieb [Dissertation on the Internet]. Hannover (Germany): Tierärztlichen Hochschule Hannover; 2006 [cited 20 Jun. 2023]. p. 133–138. German. Available in: https://goo.su/iXJXbUl
Apaydın AM. Güç Doğumlar. In: Alaçam E, ed. Evcil Hayvanlarda Doğum ve İnfertilite. Ankara (Türkiye): Medisan Yayınevi; 2007. p 195–212.
Noakes DE, Parkinson TJ, England GCW, editors. Arthurs’ Veterinary Reproduction and Obstetrics [Internet]. 8th ed. Amsterdam: Elsevier; 2001. 868 p. doi: https://doi.org/m3f4
Ali AMH. Causes and management of dystocia in small ruminants in Saudi Arabia. J. Agric. Vet. Sci. [Internet]. 2011[cited 24 Jun 2023]; 4(2):95–108. Available in: https://goo.su/0J9LsSp
Hindson JC, Winter AC. Manual of sheep diseases. 2nd ed. Oxford (United Kingdom): Blackwell Publishing; 2002. 304 p.
Jackson PGG. Handbook of Veterinary Obstetrics [Internet]. 2nd ed. Amsterdam: Elsevier; 2004; 261 p. doi: https://doi.org/m3gv
Davies KJA. Oxidative Damage and Repair: Chemical, Biological and Medical Aspects. Oxford: Pergamon Press. 1991; 899 p
Kuhn MJ, Mavangira V, Gandy JC, Sordillo LM. Production of 15–F2t–isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. J. Dairy Sci. [Internet]. 2018; 101(10):9287–9295. doi: https://doi.org/gfcpfh
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. [Internet]. 2012; 5(1):9–19. doi: https://doi.org/fzvnsw
Carmeli E, Coleman R, Berner YN. Activities of antioxidant scavenger enzymes (superoxide dismutase and glutathione peroxidase) in erythrocytes in adult women with and without type II diabetes. Exp. Diabetes Res. [Internet]. 2004; 5(2):171–175. doi: https://doi.org/ckk3dx
Ayada C, Toru Ü, Korkut Y. Nesfatin–1 and its effects on different systems. Hippokratia. [Internet]. 2015 [cited 14 Sept. 2023]; 19(1):4–10. Available in: https://goo.su/D3G8
Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Taché Y, Sachs G, Lambrecht NWG. Identification and characterization of nesfatin–1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinol. [Internet]. 2009; 150(1):232–238. doi: https://doi.org/b4pncj
Stengel A, Taché Y. Role of NUCB2/Nesfatin–1 in the hypothalamic control of energy homeostasis. Horm. Metab. Res. [Internet]. 2013; 45(13):975–979. doi: https://doi.org/f5mzvf
Algüll S, Özkan Y, Özcelik O. Serum nesfatin–1 levels in patients with different glucose tolerance levels. Physiol. Res. [Internet]. 2016; 65:979–985. doi: https://doi.org/m3g5
Aydin S. Presence of adropin, nesfatin–1, apelin–12, ghrelins and salusins peptides in the milk, cheese whey and plasma of dairy cows. Peptid. [Internet]. 2013; 43:83–87. doi: https://doi.org/f4229f
Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik–Ozenci C, Ozdem S, Barutcigil A, Ozdem S. Cardioprotective effect of nesfatin–1 against isoproterenol–induced myocardial infarction in rats: role of the Akt/GSK–3β pathway. Peptid. [Internet]. 2017; 95:1–9. doi: https://doi.org/m3g6
Wang Z, Chen S, Zou X, Tian L, Sui S, Liu N. Nesfatin–1 alleviates acute lung injury through reducing inflammation and oxidative stress via the regulation of HMGB1. Eur. Rev. Med. Pharmacol. Sci. [Internet]. 2020; 24(9):5071–5081. doi: https://doi.org/gncjvg
TR Ministry of Environment, Urbanization and Climate Change: General Directorate of Meteorology. Official Statistics [Internet]. Ankara (Türkiye) General Directorate of Meteorology; 2024 [cited 9 Jan. 2024]; 2 p. Available in: https://goo.su/zAeUwU
Aydogdu U, Coskun A, Yuksel M, Basbug O, Agaoglu ZT. The effect of dystocia on passive immune status, oxidative stress, venous blood gas and acid–base balance in lambs. Small Rumin. Res. [Internet] 2018; 166:115–120. doi: https://doi.org/gd6wt5
Kösecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Intern. J. Cardiol. [Internet]. 2005; 100(1):61–64. doi: https://doi.org/b29vtg
IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp; 2017. 97 p.
Nakao J, Grunert E. Effects of dystocia on postpartum adrenocortical function in dairy cows. J. Dairy Sci. [Internet]. 1990; 73(10):2801–2806. doi: https://doi.org/dxbk54
Uğraş, S, Dalkılıç M. Effects of aerobic exercise induced oxidative stress on energy regulatory hormones of irisin and nesfatin–1 in healthy females. Kastamonu Med. J. [Internet]. 2021; 1(1): 5–8. doi: https://doi.org/m3hd
Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M. The effects of short–term high–intensity interval training vs. moderate–intensity continuous training on plasma levels of nesfatin–1 and inflammatory markers. Horm. Mol. Biol. Clin. Investig. [Internet]. 2015; 21(3):165–173. doi: https://doi.org/m3hf
Arıkan S. Effects of acute and chronic exercises on plasma nesfatin–1 levels in young adults. Cyprus J. Med. Sci. [Internet]. 2020; 5(1): 77–80. doi: https://doi.org/m3hg
Bilski J, Mazur–Bialy AI, Surmiak M, Hubalewska–Mazgaj M, Pokorski J, Nitecki J, Nitecka E, Pokorska J, Targosz A, Ptak–Belowska A, Zoladz AJ, Brzozowski T. Effect of acute sprint exercise on myokines and food intake hormones in young healthy men. Intern. J. Mol. Sci. [Internet]. 2020; 21(22):8848. doi: https://doi.org/m3hh
Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, Jiang H. Nesfatin–1 decreases excitability of dopaminergic neurons in the substantia nigra. J. Mol. Neurosci. [Internet]. 2014; 52(3):419–424. doi: https://doi.org/m3hj
Tan Z, Xu H, Shen X, Jiang H. Nesfatin–1 antagonized rotenone–induced neurotoxicity in MES23.5 dopaminergic cells. Peptid. [Internet]. 2015; 69:109–114. doi: https://doi.org/f7dkhc
Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X. The protective effect of nesfatin–1 against renal ischemia–reperfusion injury in rats. Ren. Fail. [Internet]. 2015; 37(5):882–889. doi: https://doi.org/m3hk
Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti–inflammatory and anti–apoptotic effects of nesfatin–1 in the traumatic rat brain. Peptid. [Internet]. 2012; 36(1):39–45. doi: https://doi.org/gmn2rc
Özsavcí D, Erşahin M, Şener A, Özakpinar ÖB, Toklu HZ, Akakín D, Şener G, Yeğen BÇ. The novel function of nesfatin–1 as an anti–inflammatory and antiapoptotic peptide in subarachnoid hemorrhage–induced oxidative brain damage in rats. Neurosurg. [Internet]. 2011; 68(6):1699–1708. doi: https://doi.org/dx5bfz
Kolgazi M, Cantali–Ozturk C, Deniz R, Ozdemir–Kumral ZN, Yuksel M, Sirvanci S, Yeğen BC. Nesfatin–1 alleviates gastric damage via direct antioxidant mechanisms. J. Surg. Res. [Internet]. 2015; 193(1):111–118. doi: https://doi.org/f6tbch
Tamer SA, Yildirim A, Köroğlu MK, Çevik Ö, Ercan F, Yeğen BÇ. Nesfatin–1 ameliorates testicular injury and supports gonadal function in rats induced with testis torsion. Peptid. [Internet]. 2018; 107:1–9. doi: https://doi.org/gd7qwh
Fouad EF, Hassaneen ASA, Hussein HASA, Khalil AMH, Yousef NAM. Association between maternal dystocia and both the oxidant/antioxidant biomarkers and blood lactate in parturient Egyptian buffaloes (Bubalus bubalis). SVU– Intern. J. Vet. Sci. [Internet]. 2022; 5(4):1–14. doi: https://doi.org/m3hp
Yokus B, Bademkiran S, Cakir DU. Total anti–oxidant capacity and oxidative stress in dairy cattle and their associations with dystocia. Med. Wet. [Internet]. 2007 [cited 27 Sept 2023]; 63(2):167–170. Available in: https://goo.su/5JkC4Jv
Kizil M, Rişvanli A, Abay M, Şafak T, Kilinç MA, Yilmaz Ö, Yüksel B, Şeker İ, Güler E, Geçmez K. [Effect of Birth Type on Some Oxidative Stress and Biochemical Parameters]. F. Ü. Sağ. Bil. Vet. Derg. [Internet]. 2022 [cited 24 Jun 2023]; 36(3):169–178. Turkish. Available in: https://goo.su/a1JTRB
Akkuş T, Korkmaz Ö, Emre B, Zonturlu AK, Dinçer PFP, Yaprakci Ö. The effect of dystocia on oxidative stress, colostral antibody/passive immune status, andblood gases in Damascus goats and their kids. Turkish J. Vet. Anim. Sci. [Internet]. 2022; 46(1):18–27. doi: https://doi.org/m3hq
Noh EJ, Kim YH, Cho MK, Kim JW, Kim JW, Byun YJ, Song, TB. Comparison of oxidative stress markers in umbilical cord blood after vaginal and cesarean delivery. Obstet. Gynecol. Sci. [Internet]. 2014; 57(2):109–114. doi: https://doi.org/m3hr
Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co–activators and transcription factors with acute exercise. FASEB J. [Internet]. 2005; 19(8):986–988. doi: https://doi.org/b2b7tf
Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing Res. Rev. [Internet]. 2008; 7(1):34–42. doi: https://doi.org/cpsfqx
Khaw KS, Wang CC, Ngan Kee WD, Tam WH, Ng FF, Critchley LAH, Rogers MS. Supplementary oxygen for emergency Caesarean section under regional anaesthesia. Br. J. Anaesth. [Internet]. 2009; 102(1):90–96. doi: https://doi.org/c9jc35
Derechos de autor 2024 Tuğra Akkuş, Ömer Yaprakci
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.