An evaluation of Nesfatin–1 levels in Awassi sheep according to the type of birth
Abstract
The physiological process of birth can cause stress in animals because it affects many mechanisms. The aim of this study was to determine the effect of the type of birth on the Nesfatin–1 level and to explain the relationship with oxidative stress parameters in Awassi breed sheep. The study included a total of 60 sheep with a singleton birth in 3 groups: as Group 1 (n:20) including animals that had a normal birth, Group 2 (n:20) that had a difficult birth (dystocia), and Group 3 (n:20) including sheep that gave birth by caesarean section. Blood samples were taken from the sheep in all the groups within 10 min of the birth, for the measurement of Nesfatin–1, total antioxidant capacity (TAS), and total oxidant capacity (TOS). The data obtained were examined with One–Way Variance Analysis, and relationships between the data with the Pearson test. Statistically significant differences were determined between the groups in respect of Nesfatin–1, TAS, TOS, and oxidative stress index (OSI) levels (P<0.001). The Nesfatin–1, TOS, and OSI levels were determined to be lowest in the normal birth group and highest in the caesarean birth group (P<0.001). The TAS level was highest in the normal birth group and lowest in the caesarean birth group (P<0.001). A significant negative correlation was determined between Nesfatin–1 and TAS (r=-0.932, P<0.001), and a significant positive correlation was determined between Nesfatin–1 and TOS, and between Nesfatin–1 and OSI (r=0.957, P<0.001; r=0.960, P<0.001, respectively). These results demonstrated a significant difference in Nesfatin–1 level according to the type of birth. Therefore, Nesfatin–1 could be a new biomarker in the determination of oxidative stress in sheep according to the type of birth, and it was concluded that one of the interventions that would decrease oxidative stress after dystocia and caesarean births would be to provide an increase in endogenous Nesfatin–1 because of its antioxidative property.
Downloads
References
Essmeyer K. Aufklärung der Ursachen einer erhöhten Häufigkeit von Totgeburten in einem Milchviehbetrieb [Dissertation on the Internet]. Hannover (Germany): Tierärztlichen Hochschule Hannover; 2006 [cited 20 Jun. 2023]. p. 133–138. German. Available in: https://goo.su/iXJXbUl
Apaydın AM. Güç Doğumlar. In: Alaçam E, ed. Evcil Hayvanlarda Doğum ve İnfertilite. Ankara (Türkiye): Medisan Yayınevi; 2007. p 195–212.
Noakes DE, Parkinson TJ, England GCW, editors. Arthurs’ Veterinary Reproduction and Obstetrics [Internet]. 8th ed. Amsterdam: Elsevier; 2001. 868 p. doi: https://doi.org/m3f4
Ali AMH. Causes and management of dystocia in small ruminants in Saudi Arabia. J. Agric. Vet. Sci. [Internet]. 2011[cited 24 Jun 2023]; 4(2):95–108. Available in: https://goo.su/0J9LsSp
Hindson JC, Winter AC. Manual of sheep diseases. 2nd ed. Oxford (United Kingdom): Blackwell Publishing; 2002. 304 p.
Jackson PGG. Handbook of Veterinary Obstetrics [Internet]. 2nd ed. Amsterdam: Elsevier; 2004; 261 p. doi: https://doi.org/m3gv
Davies KJA. Oxidative Damage and Repair: Chemical, Biological and Medical Aspects. Oxford: Pergamon Press. 1991; 899 p
Kuhn MJ, Mavangira V, Gandy JC, Sordillo LM. Production of 15–F2t–isoprostane as an assessment of oxidative stress in dairy cows at different stages of lactation. J. Dairy Sci. [Internet]. 2018; 101(10):9287–9295. doi: https://doi.org/gfcpfh
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. [Internet]. 2012; 5(1):9–19. doi: https://doi.org/fzvnsw
Carmeli E, Coleman R, Berner YN. Activities of antioxidant scavenger enzymes (superoxide dismutase and glutathione peroxidase) in erythrocytes in adult women with and without type II diabetes. Exp. Diabetes Res. [Internet]. 2004; 5(2):171–175. doi: https://doi.org/ckk3dx
Ayada C, Toru Ü, Korkut Y. Nesfatin–1 and its effects on different systems. Hippokratia. [Internet]. 2015 [cited 14 Sept. 2023]; 19(1):4–10. Available in: https://goo.su/D3G8
Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Taché Y, Sachs G, Lambrecht NWG. Identification and characterization of nesfatin–1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinol. [Internet]. 2009; 150(1):232–238. doi: https://doi.org/b4pncj
Stengel A, Taché Y. Role of NUCB2/Nesfatin–1 in the hypothalamic control of energy homeostasis. Horm. Metab. Res. [Internet]. 2013; 45(13):975–979. doi: https://doi.org/f5mzvf
Algüll S, Özkan Y, Özcelik O. Serum nesfatin–1 levels in patients with different glucose tolerance levels. Physiol. Res. [Internet]. 2016; 65:979–985. doi: https://doi.org/m3g5
Aydin S. Presence of adropin, nesfatin–1, apelin–12, ghrelins and salusins peptides in the milk, cheese whey and plasma of dairy cows. Peptid. [Internet]. 2013; 43:83–87. doi: https://doi.org/f4229f
Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik–Ozenci C, Ozdem S, Barutcigil A, Ozdem S. Cardioprotective effect of nesfatin–1 against isoproterenol–induced myocardial infarction in rats: role of the Akt/GSK–3β pathway. Peptid. [Internet]. 2017; 95:1–9. doi: https://doi.org/m3g6
Wang Z, Chen S, Zou X, Tian L, Sui S, Liu N. Nesfatin–1 alleviates acute lung injury through reducing inflammation and oxidative stress via the regulation of HMGB1. Eur. Rev. Med. Pharmacol. Sci. [Internet]. 2020; 24(9):5071–5081. doi: https://doi.org/gncjvg
TR Ministry of Environment, Urbanization and Climate Change: General Directorate of Meteorology. Official Statistics [Internet]. Ankara (Türkiye) General Directorate of Meteorology; 2024 [cited 9 Jan. 2024]; 2 p. Available in: https://goo.su/zAeUwU
Aydogdu U, Coskun A, Yuksel M, Basbug O, Agaoglu ZT. The effect of dystocia on passive immune status, oxidative stress, venous blood gas and acid–base balance in lambs. Small Rumin. Res. [Internet] 2018; 166:115–120. doi: https://doi.org/gd6wt5
Kösecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Intern. J. Cardiol. [Internet]. 2005; 100(1):61–64. doi: https://doi.org/b29vtg
IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp; 2017. 97 p.
Nakao J, Grunert E. Effects of dystocia on postpartum adrenocortical function in dairy cows. J. Dairy Sci. [Internet]. 1990; 73(10):2801–2806. doi: https://doi.org/dxbk54
Uğraş, S, Dalkılıç M. Effects of aerobic exercise induced oxidative stress on energy regulatory hormones of irisin and nesfatin–1 in healthy females. Kastamonu Med. J. [Internet]. 2021; 1(1): 5–8. doi: https://doi.org/m3hd
Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M. The effects of short–term high–intensity interval training vs. moderate–intensity continuous training on plasma levels of nesfatin–1 and inflammatory markers. Horm. Mol. Biol. Clin. Investig. [Internet]. 2015; 21(3):165–173. doi: https://doi.org/m3hf
Arıkan S. Effects of acute and chronic exercises on plasma nesfatin–1 levels in young adults. Cyprus J. Med. Sci. [Internet]. 2020; 5(1): 77–80. doi: https://doi.org/m3hg
Bilski J, Mazur–Bialy AI, Surmiak M, Hubalewska–Mazgaj M, Pokorski J, Nitecki J, Nitecka E, Pokorska J, Targosz A, Ptak–Belowska A, Zoladz AJ, Brzozowski T. Effect of acute sprint exercise on myokines and food intake hormones in young healthy men. Intern. J. Mol. Sci. [Internet]. 2020; 21(22):8848. doi: https://doi.org/m3hh
Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, Jiang H. Nesfatin–1 decreases excitability of dopaminergic neurons in the substantia nigra. J. Mol. Neurosci. [Internet]. 2014; 52(3):419–424. doi: https://doi.org/m3hj
Tan Z, Xu H, Shen X, Jiang H. Nesfatin–1 antagonized rotenone–induced neurotoxicity in MES23.5 dopaminergic cells. Peptid. [Internet]. 2015; 69:109–114. doi: https://doi.org/f7dkhc
Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X. The protective effect of nesfatin–1 against renal ischemia–reperfusion injury in rats. Ren. Fail. [Internet]. 2015; 37(5):882–889. doi: https://doi.org/m3hk
Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS. The anti–inflammatory and anti–apoptotic effects of nesfatin–1 in the traumatic rat brain. Peptid. [Internet]. 2012; 36(1):39–45. doi: https://doi.org/gmn2rc
Özsavcí D, Erşahin M, Şener A, Özakpinar ÖB, Toklu HZ, Akakín D, Şener G, Yeğen BÇ. The novel function of nesfatin–1 as an anti–inflammatory and antiapoptotic peptide in subarachnoid hemorrhage–induced oxidative brain damage in rats. Neurosurg. [Internet]. 2011; 68(6):1699–1708. doi: https://doi.org/dx5bfz
Kolgazi M, Cantali–Ozturk C, Deniz R, Ozdemir–Kumral ZN, Yuksel M, Sirvanci S, Yeğen BC. Nesfatin–1 alleviates gastric damage via direct antioxidant mechanisms. J. Surg. Res. [Internet]. 2015; 193(1):111–118. doi: https://doi.org/f6tbch
Tamer SA, Yildirim A, Köroğlu MK, Çevik Ö, Ercan F, Yeğen BÇ. Nesfatin–1 ameliorates testicular injury and supports gonadal function in rats induced with testis torsion. Peptid. [Internet]. 2018; 107:1–9. doi: https://doi.org/gd7qwh
Fouad EF, Hassaneen ASA, Hussein HASA, Khalil AMH, Yousef NAM. Association between maternal dystocia and both the oxidant/antioxidant biomarkers and blood lactate in parturient Egyptian buffaloes (Bubalus bubalis). SVU– Intern. J. Vet. Sci. [Internet]. 2022; 5(4):1–14. doi: https://doi.org/m3hp
Yokus B, Bademkiran S, Cakir DU. Total anti–oxidant capacity and oxidative stress in dairy cattle and their associations with dystocia. Med. Wet. [Internet]. 2007 [cited 27 Sept 2023]; 63(2):167–170. Available in: https://goo.su/5JkC4Jv
Kizil M, Rişvanli A, Abay M, Şafak T, Kilinç MA, Yilmaz Ö, Yüksel B, Şeker İ, Güler E, Geçmez K. [Effect of Birth Type on Some Oxidative Stress and Biochemical Parameters]. F. Ü. Sağ. Bil. Vet. Derg. [Internet]. 2022 [cited 24 Jun 2023]; 36(3):169–178. Turkish. Available in: https://goo.su/a1JTRB
Akkuş T, Korkmaz Ö, Emre B, Zonturlu AK, Dinçer PFP, Yaprakci Ö. The effect of dystocia on oxidative stress, colostral antibody/passive immune status, andblood gases in Damascus goats and their kids. Turkish J. Vet. Anim. Sci. [Internet]. 2022; 46(1):18–27. doi: https://doi.org/m3hq
Noh EJ, Kim YH, Cho MK, Kim JW, Kim JW, Byun YJ, Song, TB. Comparison of oxidative stress markers in umbilical cord blood after vaginal and cesarean delivery. Obstet. Gynecol. Sci. [Internet]. 2014; 57(2):109–114. doi: https://doi.org/m3hr
Russell AP, Hesselink MK, Lo SK, Schrauwen P. Regulation of metabolic transcriptional co–activators and transcription factors with acute exercise. FASEB J. [Internet]. 2005; 19(8):986–988. doi: https://doi.org/b2b7tf
Radak Z, Chung HY, Koltai E, Taylor AW, Goto S. Exercise, oxidative stress and hormesis. Ageing Res. Rev. [Internet]. 2008; 7(1):34–42. doi: https://doi.org/cpsfqx
Khaw KS, Wang CC, Ngan Kee WD, Tam WH, Ng FF, Critchley LAH, Rogers MS. Supplementary oxygen for emergency Caesarean section under regional anaesthesia. Br. J. Anaesth. [Internet]. 2009; 102(1):90–96. doi: https://doi.org/c9jc35
Copyright (c) 2024 Tuğra Akkuş, Ömer Yaprakci
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.