Estudio epidemiológico e identificación de cepas de Escherichia coli asociadas a episodios clínicos en avicultura
Resumen
La Escherichia coli patógena aviar (EPA) representa un importante reto para la industria avícola, causante de cuantiosas pérdidas económicas. Este problema se ve agravado por el uso inadecuado y excesivo de antibióticos en medicina veterinaria, que conduce a la aparición de cepas resistentes y crea así un riesgo importante para la salud pública. El presente estudio, realizado en 38 granjas avícolas de Argelia, consistió en la recogida de 200 muestras para el aislamiento de cepas de E. coli. La resistencia de estas cepas a antibióticos de uso frecuente se evaluó mediante el método de difusión en agar. Para determinar los posibles factores de riesgo se utilizó el Análisis de Correspondencias Múltiples (ACM). Los resultados obtenidos revelaron que E. coli estaba presente en el 30 % de las muestras. Se observaron niveles alarmantes de resistencia frente a la tetraciclina (81,6 %), la ampicilina (78,3 %), la ciprofloxacina (68,3 %) y el ácido nalidíxico (60 %). Las condiciones ambientales estresantes en los gallineros, como variaciones de temperatura, mayor humedad, ventilación deficiente y densidad de población, se identificaron como factores clave en el desarrollo de la colibacilosis aviar. En conclusión, este estudio pone de relieve la urgente necesidad de vigilar y regular estrictamente el uso de antibióticos en medicina veterinaria y mejorar el bienestar animal para minimizar el riesgo para la salud pública. Además, es esencial que los granjeros mantengan unas condiciones ambientales óptimas en la cría de pollos.
Descargas
Citas
Tuntufye HN, Lebeer S, Gwakisa PS, Goddeeris BM. Identification of avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl. Environ. Microbiol. [Internet]. 2012; 78(9):3343–3351. doi: https://doi.org/mxx3
Kathayat D, Lokesh D, Ranjit S, Rajashekara G. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathog. [Internet]. 2021; 10(4):467. doi: https://doi.org/gkg675
Ievy S, Islam MS, Sobur MA, Talukder M, Rahman MB, Khan MFR, Rahman MT. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorg. [Internet]. 2020; 8(7):1021. doi: https://doi.org/mxx4
Koutsianos D, Athanasiou LV, Mossialos D, Franzo G, Cecchinato M, Koutoulis KC. Investigation of Serotype Prevalence of Escherichia coli Strains Isolated from Layer Poultry in Greece and Interactions with Other Infectious Agents. Vet. Sci. [Internet]. 2022; 9(4):152. doi: https://doi.org/mxx5
Ghorbani AR, Khoshbakht R, Kaboosi H, Shirzad–Aski H, Ghadikolaii FP. Phylogenetic relationship and virulence gene profiles of avian pathogenic and uropathogenic Escherichia coli isolated from avian colibacillosis and human urinary tract infections (UTIs). Iranian J. Vet. Res. [Internet]. 2021; 22(3):203–208. doi: https://doi.org/mxx6
Subedi M, Luitel H, Devkota B, Bhattarai RK, Phuyal S, Panthi P, Chaudhary DK. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. [Internet]. 2018; 14:113. doi: https://doi.org/j885
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute: 2020. 402 p. (CLSI Supplement M100).
Halfaoui Z, Menoueri NM, Bendali LM. Serogrouping and antibiotic resistance of Escherichia coli isolated from broiler chicken with colibacillosis in the center of Algeria. Vet. World. [Internet]. 2017; 10(7):830–835. doi: https://doi.org/mxzb
Benklaouz MB, Aggad H, Benameur Q. Resistance to multiple first–line antibiotics among Escherichia coli from poultry in Western Algeria. Vet. World. [Internet]. 2020; 13(2):290–295. doi: https://doi.org/mxzc
Aggad H, Ammar YA, Hammoudi A, Kihal M. Antimicrobial resistance of Escherichia coli isolated from chickens with colibacillosis. Glob. Vet. [Internet] 2010 [cited 10 Nov. 2023]; 4(3):303–306. Available in: https://goo.su/sA1pop
Belmahdi M, Chenouf NS, Ait Belkacem A, Martinez–Alvarez S, Pino–Hurtado MS, Benkhechiba Z, Torres C. Extended Spectrum β–Lactamase–Producing Escherichia coli from Poultry and Wild Birds (Sparrow) in Djelfa (Algeria), with Frequent Detection of CTX–M–14 in Sparrow. Antibiot. [Internet]. 2022; 11(12):1814. doi: https://doi.org/mxzf
Mansouri N, Aoun L, Dalichaouche N, Hadri D. Yields, chemical composition, and antimicrobial activity of two Algerian essential oils against 40 avian multidrug–resistant Escherichia coli strains. Vet. World. [Internet]. 2018; 11(11):1539–1550. doi: https://doi.org/mxzh
Dou X, Gong J, Han X, Xu M, Shen H, Zhang D, Zou J. Characterization of avian pathogenic Escherichia coli isolated in eastern China. Gene. [Internet]. 2016; 576(1 part 2):244–248. doi: https://doi.org/f8bbzf
Granados–Chinchilla F, Rodríguez C. Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Analyt. Meth. Chem. [Internet]. 2017; 2017:1315497. doi: https://doi.org/gtk6nv
Oyewale AT, Adesakin TA, Aduwo AI. Environmental impact of heavy metals from poultry waste discharged into the Olosuru stream, Ikire, southwestern Nigeria. J. Health Pollut. [Internet]. 2019; 9(22):190607. doi: https://doi.org/mxzj
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech. [Internet]. 2020; 10:238. doi: https://doi.org/mxzm
Meguenni N, Chanteloup N, Tourtereau A, Ahmed CA, Bounar–Kechih S, Schouler C. Virulence and antibiotic resistance profile of avian Escherichia coli strains isolated from colibacillosis lesions in the central of Algeria. Vet. World. [Internet]. 2019; 12(11):1840–1848. doi: https://doi.org/mxzk
Belmahdi M, Bakour S, Al Bayssari C, Touati A, Rolain JM. Molecular characterisation of extended–spectrum β–lactamase– and plasmid AmpC–producing Escherichia coli strains isolated from broilers in Béjaïa, Algeria. J. Glob. Antimicrob. Resist. [Internet]. 2016; 6:108–112. doi: https://doi.org/mxzn
Aberkane C, Messaï A, Messaï CR, Boussaada T. Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended–spectrum β–lactamase–producing isolates in broilers in east Algeria. Vet. World. [Internet]. 2023; 16(3):449–454. doi: https://doi.org/mxzq
Ramalho R, Mezzomo LC, Machado W, da Silva–Morais, Hein C, Müller CZ, da Silva TCB, Martins AF. The occurrence of antimicrobial residues and antimicrobial resistance genes in urban drinking water and sewage in Southern Brazil. Brazilian J. Microbiol. [Internet]. 2022; 53(3):1483–1489. doi: https://doi.org/mxzr
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. [Internet]. 2021; 61(12):1049–1070. doi: https://doi.org/gm5892
Lee YJ, Jung HR, Yoon S, Lim SK, Lee YJ. Situational analysis on fluoroquinolones use and characterization of high–level ciprofloxacin–resistant Enterococcus faecalis by integrated broiler operations in South Korea. Front. Vet. Sci. [Internet]. 2023; 10:1158721. doi: https://doi.org/mxzs
Schmerold I, Geijlswijk IV, Gehring R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. [Internet]. 2023; 189:106473. doi: https://doi.org/mxzt
Benameur Q, Guemour D, Hammoudi A, Aoudia H, Aggad H, Humblet MH, Saegermang C. Antimicrobial resistance of Escherichia coli isolated from chickens in West of Algeria. Intern. J. Sci. Basic Appl. Res. [Internet]. 2014 [cited 15 Nov. 2023]; 13(1):366–370. Available in: https://goo.su/OJ6U
Ibrahim RA, Cryer TL, Lafi SQ, Basha EA, Good L, Tarazi YH. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet. Res. [Internet]. 2019; 15:159. doi: https://doi.org/mxzv
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson–Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López–Alonso M, Nielsen SS, Pechova A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López–Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross‐contamination ML, for 24 antimicrobial active substances in non‐target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J. [Internet]. 2021; 19(10): e06864. doi: https://doi.org/gnsd9t
Campos J, Cristino L, Peixe L, Antunes P. MCR–1 in multidrug–resistant and copper–tolerant clinically relevant Salmonella 1,4,[5],12:i:–and S. Rissen clones in Portugal, 2011 to 2015. Euro surveill. [Internet]. 2016; 21(26):30270. doi: https://doi.org/mx2g
Baquero F, Martínez JL, Novais Â, Rodríguez–Beltrán J, Martínez–García L, Coque TM, Galán JC. Allogenous selection of mutational collateral resistance: old drugs select for new resistance within antibiotic families. Front. Microbiol. [Internet]. 2021; 12:757833. doi: https://doi.org/mx2h
Kiiti RW, Komba EV, Msoffe PL, Mshana SE, Rweyemamu M, Matee MI. Antimicrobial resistance profiles of Escherichia coli isolated from broiler and layer chickens in Arusha and Mwanza, Tanzania. Intern. J. Microbiol. [Internet]. 2021; 2021:6759046. doi: https://doi.org/mx2j
Kakooza S, Munyiirwa D, Ssajjakambwe P, Kayaga E, Tayebwa DS, Ndoboli D, Kaneene JB. Epidemiological dynamics of extended–spectrum β–lactamase– or AmpC β–lactamase–producing Escherichia coli screened in apparently healthy chickens in Uganda. Scientifica [Internet]. 2021; 2021:3258059. doi: https://doi.org/gnwvjs
Banik GR, Durayb B, King C, Rashid H. Antimicrobial resistance following prolonged use of hand hygiene products: a systematic review. Pharmacy. [Internet]. 2022; 10(1):9. doi: https://doi.org/mx2k
Witte W. Selective pressure by antibiotic use in livestock. Intern. J. Antimicrob. Agents. [Internet]. 2000; 16(Suppl. 1):19–24. doi: https://doi.org/d572nd
Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry. Front. Microbiol. [Internet]. 2014; 5:217. doi: https://doi.org/gh5tqv
Rozman U, Pušnik M, Kmetec S, Duh D, Šostar–Turk S. Reduced susceptibility and increased resistance of bacteria against disinfectants: A systematic review. Microorganisms. [Internet]. 2021; 9(12):2550. doi: https://doi.org/mx2m
Abo–Al–Ela HG, El–Kassas S, El–Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones. [Internet]. 2021; 26(3):457–472. doi: https://doi.org/mx2n
Song B, Tang D, Yan S, Fan H, Li G, Shahid MS, Guo Y. Effects of age on immune function in broiler chickens. J. Anim. Sci. Biotechnol. [Internet]. 2021; 12:42. doi: https://doi.org/gqws22
Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines. [Internet]. 2022; 10(2):172. doi: https://doi.org/mx2q
Drancourt M. 38 – Acute diarrhea. In: Cohen J, Powderly WG, Opal SM, editors. Infectious Diseases 4th ed. [Internet]. London: Elsevier; 2017. 1:335–340.e2. doi: https://doi.org/mx2r
Oh JY, Kang MS, An BK, Song EA, Kwon JH, Kwon YK. Occurrence of purulent arthritis broilers vertically infected with Salmonella enterica serovar Enteritidis in Korea. Poult. Sci. [Internet]. 2010; 89(10):2116–2122. doi: https://doi.org/bg34g6
Uyanga VA, Musa TH, Oke OE, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front. Physiol. [Internet]. 2023; 14:1123582. doi: https://doi.org/mx2t
Heckert RA, Estevez I, Russek–Cohen E, Pettit–Riley R. Effects of density and perch availability on the immune status of broilers. Poult. Sci. [Internet]. 2002; 81(4):451–457. doi: https://doi.org/mx2v
Wlaźlak S, Pietrzak E, Biesek J, Dunislawska A. Modulation of the immune system of chickens, a key factor in maintaining poultry production—a review. Poult. Sci. [Internet]. 2023; 102(8):102785. doi: https://doi.org/mx2w
Liu QX, Zhou Y, Li XM, Ma DD, Xing S, Feng JH, Zhang MH. Ammonia induces lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult. Sci. [Internet]. 2020; 99(7):3402–3410. doi: https://doi.org/mx2x
Ismaïl R, Aviat F, Michel V, Le Bayon I, Gay–Perret P, Kutnik M, Fédérighi M. Methods for recovering microorganisms from solid surfaces used in the food industry: a review of the literature. Int. J. Environ. Res. Public Health. [Internet]. 2013; 10(11):6169–6183. doi: https://doi.org/f5jkr2
Artasensi A, Mazzotta S, Fumagalli L. Back to basics: Choosing the appropriate surface disinfectant. Antibiotics. [Internet]. 2021; 10(6):613. doi: https://doi.org/gk7zvj
Capria VM, Fernandez MO, Walker MM, Bergdall VK. Comparison of floor cleaning and disinfection processes in a research animal facility. J. Am. Assoc. Lab. Anim. Sci. [Internet]. 2022; 61(6):644–649. doi: https://doi.org/mx2z
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health. [Internet]. 2021; 18(4):2014. doi: https://doi.org/gn9t4j
Di Martino G, Piccirillo A, Giacomelli M, Comin D, Gallina A, Capello K, Buniolo F, Montesissa C, Bonfanti L. Microbiological, chemical and physical quality of drinking water for commercial turkeys: a cross–sectional study. Poult. Sci. [Internet]. 2018; 97(8):2880–2886. doi: https://doi.org/gdd86h
Augusto E, Aleixo J, Chilala FD, Chilundo AG, Gaspar B, Bila CG. Physical, chemical and microbiological assessments of drinking water of small–layer farms. Onderstepoort J. Vet. Res. [Internet]. 2022; 89(1):a2067. doi: https://doi.org/mx22
Awad AM, El–Shall NA, Khalil DS, El–Hack MEA, Swelum AA, Mahmoud AH, Ebaid H, Komany A, Sammour RH, Sedeik ME. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks. Pathog. [Internet]. 2020; 9(2):114. doi: https://doi.org/mx23
Derechos de autor 2024 Sarah Saci, Amine Msela, Hillal Sebbane, Bilal Saoudi, Yousra Belounis, Hakima Ait Issad, Karim Houali
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.