Epidemiological study and identification of Escherichia coli strains associated with clinical events in Avian farming

  • Sarah Saci Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de Biochimie Analytique et Biotechnologies (LABAB). Tizi Ouzou, Algérie
  • Amine Msela Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de Biochimie Analytique et Biotechnologies (LABAB). Tizi Ouzou, Algérie
  • Hillal Sebbane Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de Biochimie Analytique et Biotechnologies (LABAB). Tizi Ouzou, Algérie
  • Bilal Saoudi Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de Biochimie Analytique et Biotechnologies (LABAB). Tizi Ouzou, Algérie
  • Yousra Belounis Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de Biochimie Analytique et Biotechnologies (LABAB). Tizi Ouzou, Algérie
  • Hakima Ait Issad Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de ressources naturelles. Tizi Ouzou, Algérie
  • Karim Houali Université Mouloud Mammeri de Tizi–Ouzou, Laboratoire de Biochimie Analytique et Biotechnologies (LABAB). Tizi Ouzou, Algérie
Keywords: Algeria, antibiotic resistance, avian colibacillosis, avian pathogenic, Escherichia coli, risk factors

Abstract

Avian pathogenic Escherichia coli (APEC) represents a major challenge for the poultry industry, causing significant economic losses. This problem is exacerbated by the misuse use of antibiotics in Veterinary Medicine, leading to the emergence of resistant strains and thus creating a significant risk to Public Health. This study, carried out on 38 poultry farms in Algeria, involved the collection of 200 samples for the isolation of E. coli strains. The resistance of these strains to frequently used antibiotics was assessed using the agar diffusion method. Multiple Correspondence Analysis (MCA) was used to determine potential risk factors. The obtained results revealed that E. coli was present in 30% of samples. Alarming levels of resistance were observed against Tetracycline (81.6%), Ampicillin (78.3%), Ciprofloxacin (68.3%) and Nalidixic acid (60%). Stressful environmental conditions in poultry houses, such as temperature variations, high humidity, poor ventilation and stocking density were identified as key factors in the development of avian colibacillosis. In conclusion, the current study highlights the urgent need to strictly monitor and regulate the use of antibiotics in Veterinary Medicine and improve animal welfare in order to minimize the risk it pose to Public Health originated in the farms. In addition, it is essential that farmers maintain optimal environmental conditions in chicken rearing.

Downloads

Download data is not yet available.

References

Tuntufye HN, Lebeer S, Gwakisa PS, Goddeeris BM. Identification of avian pathogenic Escherichia coli genes that are induced in vivo during infection in chickens. Appl. Environ. Microbiol. [Internet]. 2012; 78(9):3343–3351. doi: https://doi.org/mxx3

Kathayat D, Lokesh D, Ranjit S, Rajashekara G. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathog. [Internet]. 2021; 10(4):467. doi: https://doi.org/gkg675

Ievy S, Islam MS, Sobur MA, Talukder M, Rahman MB, Khan MFR, Rahman MT. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorg. [Internet]. 2020; 8(7):1021. doi: https://doi.org/mxx4

Koutsianos D, Athanasiou LV, Mossialos D, Franzo G, Cecchinato M, Koutoulis KC. Investigation of Serotype Prevalence of Escherichia coli Strains Isolated from Layer Poultry in Greece and Interactions with Other Infectious Agents. Vet. Sci. [Internet]. 2022; 9(4):152. doi: https://doi.org/mxx5

Ghorbani AR, Khoshbakht R, Kaboosi H, Shirzad–Aski H, Ghadikolaii FP. Phylogenetic relationship and virulence gene profiles of avian pathogenic and uropathogenic Escherichia coli isolated from avian colibacillosis and human urinary tract infections (UTIs). Iranian J. Vet. Res. [Internet]. 2021; 22(3):203–208. doi: https://doi.org/mxx6

Subedi M, Luitel H, Devkota B, Bhattarai RK, Phuyal S, Panthi P, Chaudhary DK. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. [Internet]. 2018; 14:113. doi: https://doi.org/j885

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute: 2020. 402 p. (CLSI Supplement M100).

Halfaoui Z, Menoueri NM, Bendali LM. Serogrouping and antibiotic resistance of Escherichia coli isolated from broiler chicken with colibacillosis in the center of Algeria. Vet. World. [Internet]. 2017; 10(7):830–835. doi: https://doi.org/mxzb

Benklaouz MB, Aggad H, Benameur Q. Resistance to multiple first–line antibiotics among Escherichia coli from poultry in Western Algeria. Vet. World. [Internet]. 2020; 13(2):290–295. doi: https://doi.org/mxzc

Aggad H, Ammar YA, Hammoudi A, Kihal M. Antimicrobial resistance of Escherichia coli isolated from chickens with colibacillosis. Glob. Vet. [Internet] 2010 [cited 10 Nov. 2023]; 4(3):303–306. Available in: https://goo.su/sA1pop

Belmahdi M, Chenouf NS, Ait Belkacem A, Martinez–Alvarez S, Pino–Hurtado MS, Benkhechiba Z, Torres C. Extended Spectrum β–Lactamase–Producing Escherichia coli from Poultry and Wild Birds (Sparrow) in Djelfa (Algeria), with Frequent Detection of CTX–M–14 in Sparrow. Antibiot. [Internet]. 2022; 11(12):1814. doi: https://doi.org/mxzf

Mansouri N, Aoun L, Dalichaouche N, Hadri D. Yields, chemical composition, and antimicrobial activity of two Algerian essential oils against 40 avian multidrug–resistant Escherichia coli strains. Vet. World. [Internet]. 2018; 11(11):1539–1550. doi: https://doi.org/mxzh

Dou X, Gong J, Han X, Xu M, Shen H, Zhang D, Zou J. Characterization of avian pathogenic Escherichia coli isolated in eastern China. Gene. [Internet]. 2016; 576(1 part 2):244–248. doi: https://doi.org/f8bbzf

Granados–Chinchilla F, Rodríguez C. Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. J. Analyt. Meth. Chem. [Internet]. 2017; 2017:1315497. doi: https://doi.org/gtk6nv

Oyewale AT, Adesakin TA, Aduwo AI. Environmental impact of heavy metals from poultry waste discharged into the Olosuru stream, Ikire, southwestern Nigeria. J. Health Pollut. [Internet]. 2019; 9(22):190607. doi: https://doi.org/mxzj

Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech. [Internet]. 2020; 10:238. doi: https://doi.org/mxzm

Meguenni N, Chanteloup N, Tourtereau A, Ahmed CA, Bounar–Kechih S, Schouler C. Virulence and antibiotic resistance profile of avian Escherichia coli strains isolated from colibacillosis lesions in the central of Algeria. Vet. World. [Internet]. 2019; 12(11):1840–1848. doi: https://doi.org/mxzk

Belmahdi M, Bakour S, Al Bayssari C, Touati A, Rolain JM. Molecular characterisation of extended–spectrum β–lactamase– and plasmid AmpC–producing Escherichia coli strains isolated from broilers in Béjaïa, Algeria. J. Glob. Antimicrob. Resist. [Internet]. 2016; 6:108–112. doi: https://doi.org/mxzn

Aberkane C, Messaï A, Messaï CR, Boussaada T. Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended–spectrum β–lactamase–producing isolates in broilers in east Algeria. Vet. World. [Internet]. 2023; 16(3):449–454. doi: https://doi.org/mxzq

Ramalho R, Mezzomo LC, Machado W, da Silva–Morais, Hein C, Müller CZ, da Silva TCB, Martins AF. The occurrence of antimicrobial residues and antimicrobial resistance genes in urban drinking water and sewage in Southern Brazil. Brazilian J. Microbiol. [Internet]. 2022; 53(3):1483–1489. doi: https://doi.org/mxzr

Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Dou T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. [Internet]. 2021; 61(12):1049–1070. doi: https://doi.org/gm5892

Lee YJ, Jung HR, Yoon S, Lim SK, Lee YJ. Situational analysis on fluoroquinolones use and characterization of high–level ciprofloxacin–resistant Enterococcus faecalis by integrated broiler operations in South Korea. Front. Vet. Sci. [Internet]. 2023; 10:1158721. doi: https://doi.org/mxzs

Schmerold I, Geijlswijk IV, Gehring R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. [Internet]. 2023; 189:106473. doi: https://doi.org/mxzt

Benameur Q, Guemour D, Hammoudi A, Aoudia H, Aggad H, Humblet MH, Saegermang C. Antimicrobial resistance of Escherichia coli isolated from chickens in West of Algeria. Intern. J. Sci. Basic Appl. Res. [Internet]. 2014 [cited 15 Nov. 2023]; 13(1):366–370. Available in: https://goo.su/OJ6U

Ibrahim RA, Cryer TL, Lafi SQ, Basha EA, Good L, Tarazi YH. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet. Res. [Internet]. 2019; 15:159. doi: https://doi.org/mxzv

EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson–Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López–Alonso M, Nielsen SS, Pechova A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López–Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross‐contamination ML, for 24 antimicrobial active substances in non‐target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J. [Internet]. 2021; 19(10): e06864. doi: https://doi.org/gnsd9t

Campos J, Cristino L, Peixe L, Antunes P. MCR–1 in multidrug–resistant and copper–tolerant clinically relevant Salmonella 1,4,[5],12:i:–and S. Rissen clones in Portugal, 2011 to 2015. Euro surveill. [Internet]. 2016; 21(26):30270. doi: https://doi.org/mx2g

Baquero F, Martínez JL, Novais Â, Rodríguez–Beltrán J, Martínez–García L, Coque TM, Galán JC. Allogenous selection of mutational collateral resistance: old drugs select for new resistance within antibiotic families. Front. Microbiol. [Internet]. 2021; 12:757833. doi: https://doi.org/mx2h

Kiiti RW, Komba EV, Msoffe PL, Mshana SE, Rweyemamu M, Matee MI. Antimicrobial resistance profiles of Escherichia coli isolated from broiler and layer chickens in Arusha and Mwanza, Tanzania. Intern. J. Microbiol. [Internet]. 2021; 2021:6759046. doi: https://doi.org/mx2j

Kakooza S, Munyiirwa D, Ssajjakambwe P, Kayaga E, Tayebwa DS, Ndoboli D, Kaneene JB. Epidemiological dynamics of extended–spectrum β–lactamase– or AmpC β–lactamase–producing Escherichia coli screened in apparently healthy chickens in Uganda. Scientifica [Internet]. 2021; 2021:3258059. doi: https://doi.org/gnwvjs

Banik GR, Durayb B, King C, Rashid H. Antimicrobial resistance following prolonged use of hand hygiene products: a systematic review. Pharmacy. [Internet]. 2022; 10(1):9. doi: https://doi.org/mx2k

Witte W. Selective pressure by antibiotic use in livestock. Intern. J. Antimicrob. Agents. [Internet]. 2000; 16(Suppl. 1):19–24. doi: https://doi.org/d572nd

Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry. Front. Microbiol. [Internet]. 2014; 5:217. doi: https://doi.org/gh5tqv

Rozman U, Pušnik M, Kmetec S, Duh D, Šostar–Turk S. Reduced susceptibility and increased resistance of bacteria against disinfectants: A systematic review. Microorganisms. [Internet]. 2021; 9(12):2550. doi: https://doi.org/mx2m

Abo–Al–Ela HG, El–Kassas S, El–Naggar K, Abdo SE, Jahejo AR, Al Wakeel RA. Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress. Cell Stress Chaperones. [Internet]. 2021; 26(3):457–472. doi: https://doi.org/mx2n

Song B, Tang D, Yan S, Fan H, Li G, Shahid MS, Guo Y. Effects of age on immune function in broiler chickens. J. Anim. Sci. Biotechnol. [Internet]. 2021; 12:42. doi: https://doi.org/gqws22

Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines. [Internet]. 2022; 10(2):172. doi: https://doi.org/mx2q

Drancourt M. 38 – Acute diarrhea. In: Cohen J, Powderly WG, Opal SM, editors. Infectious Diseases 4th ed. [Internet]. London: Elsevier; 2017. 1:335–340.e2. doi: https://doi.org/mx2r

Oh JY, Kang MS, An BK, Song EA, Kwon JH, Kwon YK. Occurrence of purulent arthritis broilers vertically infected with Salmonella enterica serovar Enteritidis in Korea. Poult. Sci. [Internet]. 2010; 89(10):2116–2122. doi: https://doi.org/bg34g6

Uyanga VA, Musa TH, Oke OE, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front. Physiol. [Internet]. 2023; 14:1123582. doi: https://doi.org/mx2t

Heckert RA, Estevez I, Russek–Cohen E, Pettit–Riley R. Effects of density and perch availability on the immune status of broilers. Poult. Sci. [Internet]. 2002; 81(4):451–457. doi: https://doi.org/mx2v

Wlaźlak S, Pietrzak E, Biesek J, Dunislawska A. Modulation of the immune system of chickens, a key factor in maintaining poultry production—a review. Poult. Sci. [Internet]. 2023; 102(8):102785. doi: https://doi.org/mx2w

Liu QX, Zhou Y, Li XM, Ma DD, Xing S, Feng JH, Zhang MH. Ammonia induces lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult. Sci. [Internet]. 2020; 99(7):3402–3410. doi: https://doi.org/mx2x

Ismaïl R, Aviat F, Michel V, Le Bayon I, Gay–Perret P, Kutnik M, Fédérighi M. Methods for recovering microorganisms from solid surfaces used in the food industry: a review of the literature. Int. J. Environ. Res. Public Health. [Internet]. 2013; 10(11):6169–6183. doi: https://doi.org/f5jkr2

Artasensi A, Mazzotta S, Fumagalli L. Back to basics: Choosing the appropriate surface disinfectant. Antibiotics. [Internet]. 2021; 10(6):613. doi: https://doi.org/gk7zvj

Capria VM, Fernandez MO, Walker MM, Bergdall VK. Comparison of floor cleaning and disinfection processes in a research animal facility. J. Am. Assoc. Lab. Anim. Sci. [Internet]. 2022; 61(6):644–649. doi: https://doi.org/mx2z

Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial biofilms in the food industry—A comprehensive review. Int. J. Environ. Res. Public Health. [Internet]. 2021; 18(4):2014. doi: https://doi.org/gn9t4j

Di Martino G, Piccirillo A, Giacomelli M, Comin D, Gallina A, Capello K, Buniolo F, Montesissa C, Bonfanti L. Microbiological, chemical and physical quality of drinking water for commercial turkeys: a cross–sectional study. Poult. Sci. [Internet]. 2018; 97(8):2880–2886. doi: https://doi.org/gdd86h

Augusto E, Aleixo J, Chilala FD, Chilundo AG, Gaspar B, Bila CG. Physical, chemical and microbiological assessments of drinking water of small–layer farms. Onderstepoort J. Vet. Res. [Internet]. 2022; 89(1):a2067. doi: https://doi.org/mx22

Awad AM, El–Shall NA, Khalil DS, El–Hack MEA, Swelum AA, Mahmoud AH, Ebaid H, Komany A, Sammour RH, Sedeik ME. Incidence, pathotyping, and antibiotic susceptibility of avian pathogenic Escherichia coli among diseased broiler chicks. Pathog. [Internet]. 2020; 9(2):114. doi: https://doi.org/mx23

Published
2024-05-27
How to Cite
1.
Saci S, Msela A, Sebbane H, Saoudi B, Belounis Y, Ait Issad H, Houali K. Epidemiological study and identification of Escherichia coli strains associated with clinical events in Avian farming. Rev. Cient. FCV-LUZ [Internet]. 2024May27 [cited 2024Nov.20];34(2):10. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/42186
Section
Veterinary Medicine