Serotipado de Escherichia coli aisladas de pollos de engorde y determinación de resistencia a la Colistina

  • Ugur Parin Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Microbiology Isikli. Aydin, Turkey https://orcid.org/
  • Gonenc Simsek Aydin Adnan Menderes University, Institute of Health Sciences, Department of Microbiology Efeler. Aydin, Turkey
Palabras clave: Escherichia coli patógena aviar, gen mcr, resistencia a antibióticos

Resumen

Las infecciones sistémicas por Escherichia coli patógena aviar (APEC) son económicamente dañinas para las industrias avícolas en todo el mundo. Las cepas de E. coli de los serotipos O1, O2, O18 y O78 se asocian preferentemente con la colibacilosis aviar. El grupo de genes rfb que controla la síntesis del antígeno O generalmente varía entre los diferentes serotipos de E. coli. En este estudio, los grupos de genes rfb de los serotipos O1, O2, O18 y O78 de E. coli se caracterizaron y compararon, y también tuvo como objetivo buscar la resistencia a la Colistina sobre una base molecular. Para la investigación, se tomaron muestras de hisopados de 200 pollos con sospecha de colibacilosis en las granjas avícolas de pollos de engorde en las provincias de Aydın, İzmir y Manisa, en Turkia, 2022. Como resultado del análisis microbiológico de las muestras se identificaron 108 (54 %) Escherichia coli. Además, Klebsiella spp. en 35 (17,5 %) de las muestras, Proteus spp., en 23 (11,5 %) y Pseudomonas spp., en 18 (9 %) de las muestras identificadas y el crecimiento bacteriano no ocurrió en 16 (8 %) de ellos. La presencia de los genes mcr-1 (309 pb) y mcr–2 (567 pb) responsables de la resistencia a la Colistina en los ADN plasmídicos extraídos de 108 aislados de E. coli obtenidos en el estudio, se investigó mediante el método PCR. Como resultado de la amplificación por PCR, los genes mcr-1 y mcr–2 no pudieron detectarse en ninguna de las muestras. El método de PCR se evaluó como un método sensible y aplicable para la identificación y serotipificación de APEC, y se determinó el perfil de resistencia a múltiples fármacos en las cepas de E. coli aisladas de acuerdo con los resultados del antibiograma.

Descargas

La descarga de datos todavía no está disponible.

Citas

Özavci V, Yüksel–Dolgun HT, Kirkan Ş. Phylogenetic characterization and determination of antibiotic susceptibility of avian pathogenic Escherichia coli strains isolated from broiler visceral organs. Rev. Cientif. FCV–LUZ. 2022; 32:1–8. doi: https://doi.org/j883.

Barnes HJ, Nolan LK, Waillancourt JP. Colibacillosis. In: Saif YM. (ed). Diseases of Poultry. 12nd. ed. USA. Blackwell Publishing Professional; 2008; p. 691–732.

Songer JG, Post KW. Veteriner Hekimlik Mikrobiyolojisi. 1st. ed. İstanbul: Nobel Tıp Kitapevleri. 2005; p. 113–120.

Köhler CD, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Intern. J. Med. Microbiol. 2011; 301(8):642–7. doi: https://doi.org/fkvv73.

Wang S, Meng Q, Dai J, Han X, Han Y. Development of an allele–specific PCR assay for simultaneous serotyping of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains. PLoS One. 2014; 9(5):e96904.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid–mediated Colistin resistance mechanism MCR–1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 2016; 16(2):161–8. doi: https://doi.org/987.

Xavier BB, Lammens C, Ruhal R, Kumar–Singh S, Butaye P, Goossens H, Malhotra–Kumar S. Identification of a novel plasmid–mediated Colistin–resistance gene, mcr–2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016; 21(27):e1560–7917. doi: https://doi.org/f9ppdd.

Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 24th informational supplement (M100–S23). Wayne PA, USA: CLSI; 2014.

Subedi M, Luitel H, Devkota B, Bhattarai RK, Phuyal S, Panthi P, Shrestha A, Chaudhary DK. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018; 14(1):113. doi: https://doi.org/j885.

Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010; 8:26–38.

Bhandari S., Singh S. Annual consumption of veterinary medicines and feed supplement in Nepal. NVJ. 2004; 28:25–32.

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 2015; 112:5649–54.

Bakhshi M, Bafghi MF, Astani A, Ranjbar VR, Zandi H, Vakili M. Antimicrobial resistance pattern of Escherichia coli isolated from chickens with colibacillosis in Yazd, Iran. J. Food Qual. Hazards Contr. 2017; 4:74–78.

Bist B, Sharma B, Jain U. Virulence associated factors and antibiotic sensitivity pattern of Escherichia coli isolated from cattle and soil. Vet. World. 2014; 3:69–72.

Basnyat B, Pokharel P, Dixit S, Giri S. Antibiotic use, its resistance in Nepal and recommendations for action: a situation analysis. J. Nepal Health. Res. Counc. 2015; 13:102–111.

Yang H, Chen S, White DG, Zhao S, Mc Dermott P, Walker R. Characterization of multiple–antimicrobial–resistant Escherichia coli isolates from diseased chickens and swine in China. J Clin. Microbiol. 2004; 42:3483–9. doi: https://doi.org/fv4s4d.

Kim TE, Jeong YW, Cho SH, Kim SJ, Kwon HJ. Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. J. Clin. Microbiol. 2007; 45:3309–3315.

Chitanand MP, Kadam TA, Gyananath G, Totewad ND, Balhal DK. Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. Indian J. Microbiol. 2010; 50(1):216–20.

Van Den Bogaard AE, London N, Driessen C, Stobberingh EE. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 2001; 47(6):763–71.

Caniaux I, Belkum A, Van Zambardi G, Poirel L, Gros MF. MCR: modern Colistin resistance. Eur. J. Clin. Microbiol. 2016; 35(9):1463–1465. doi: https://doi.org/j887.

Etebu E, Ukpong M. Bacterial resistance to antibiotics: Update on molecular perspectives. Microbiol. Res. Intern. 2016; 4(4):40–49.

Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and tigecycline resistance in carbapenemase–producing gram negative bacteria: emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016; 121(6):1377–1391. doi: https://doi.org/f84p4j.

Irrgang A, Roschanski N, Tenhagen BA, Grobbel M, Skladnikiewicz–Ziemer T, Thomas K, Käsbohrer A. Prevalence of mcr–1 in E. coli from livestock and food in Germany, 2010–2015. PLoS One. 2016; 11(7): e0159863. doi: https://doi.org/gbpph8.

Stoesser N, Mathers AJ, Moore CE, Day NP, Crook DW. Colistin resistance gene mcr–1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect. Dis. 2016; 16(3):285–6. doi: https://doi.org/j89b.

Suzuki S, Ohnishi M, Kawanishi M, Akiba M, Kuroda M. Investigation of a plasmid genome database for Colistin–resistance gene mcr–1. Lancet Infect. Dis. 2016; 16(3):284–5. doi: https://doi.org/j89c.

Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Skov RL. Detection of mcr–1 encoding plasmid–mediated Colistin resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveill. 2015; 20(49):1–5. doi: https://doi.org/j89f.

Haenni M, Poirel L, Kieffer N, Châtre P, Saras E, Métayer V, Madec JY. Co–occurrence of extended spectrum β–lactamase and MCR–1 encoding genes on plasmids. Lancet Infect. Dis. 2016; 16(3):281–282. doi: https://doi.org/grkdnz.

Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Käsbohrer A, Roesler U, Chakraborty T. Colistin resistance gene mcr–1 in extended–spectrum β–lactamase producing and carbapenemase–producing Gram–negative bacteria in Germany. Lancet Infect Dis. 2016;16(3):282–283. doi: https://doi.org/gk9prt.

Anjum MF, Duggett NA, AbuOun M, Randall L, Nunez–Garcia J, Ellis RJ, Teale C. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J Antimicrob. Chemother. 2016; 71(8):2306–2313. doi: https://doi.org/f837tj.

Zurfuh K, Poirel L, Nordmann P, Nüesch–Inderbinen M, Hächler H, Stephan R. Occurrence of the Plasmid–Borne mcr–1 Colistin resistance gene in extended spectrum–lactamase–producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob. Agents Chemother. 2016; 60(4):2594–5. doi: https://doi.org/j89g.

Grami R, Mansour W, Mehri W, Bouallègue O, Boujaâfar N, Madec J, Haenni M. Impact of food animal trade on the spread of mcr–1–mediated Colistin resistance, Tunisia, July 2015. Eurosurveill. 2016; 21(8):1–5. doi: https://doi.org/gm656x.

McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, Schaecher KE. Escherichia coli Harboring mcr–1 and blaCTX–M on a Novel IncF Plasmid: First report of mcr–1 in the USA. Antimicrob. Agents Chemother. 2016; 60(7):4420–1. doi: https://doi.org/gf5bf7.

Catry B, Cavaleri M, Baptiste K, Grave K, Grein K, Holm A, Jukes H, Liebana E, Navas AL, Mackay D, Magiorakos AP, Romo MA, Moulin G, Madero CM, Pomba MC, Powell M, Pyorala S, Rantala M, Ruzauskas M, Sanders P, Teale C, Threlfall EJ, Torneke K, Van Duijkeren E, Edo JT. Use of Colistin–containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Intern. J. Antimicrob. Agents. 2015; 46(3):297–306. doi: https://doi.org/f7qfnp.

Aghapour Z, Hasani A, Aghazadeh M, Ahangarzadeh M. Genes involved in Colistin resistance of Gram–negative isolates in the northwest of Iran. Gene Reports. 2019; 14:81–86. doi: https://doi.org/j89h.

Yang Y, Li Y, Lei C, Zhang A, Wang H. Novel plasmid–mediated Colistin resistance gene mcr–1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018; 73(7):1791–1795. doi: https://doi.org/gdqs2x.

Publicado
2023-05-15
Cómo citar
1.
Parin U, Simsek G. Serotipado de Escherichia coli aisladas de pollos de engorde y determinación de resistencia a la Colistina. Rev. Cient. FCV-LUZ [Internet]. 15 de mayo de 2023 [citado 22 de diciembre de 2024];33(1):1-. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/40142
Sección
Medicina Veterinaria