Serotyping of Escherichia coli species isolated from broilers and determination of Colistin resistance

  • Ugur Parin Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Microbiology Isikli. Aydin, Turkey https://orcid.org/
  • Gonenc Simsek Aydin Adnan Menderes University, Institute of Health Sciences, Department of Microbiology Efeler. Aydin, Turkey
Keywords: Avian pathogenic Escherichia coli, mcr gene, antibiotic resistance

Abstract

Systemic infections by avian pathogenic Escherichia coli (APEC) are economically damaging to poultry industries Worldwide. E. coli strains of serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster that controls O antigen synthesis generally varies among different E. coli serotypes. In this study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared, and it was also aimed to search for Colistin resistance on a molecular basis. For the research, 200 swab samples were taken from 200 chickens suspected of colibacillosis in broiler poultry farms located in the vicinity of Aydın, İzmir, and Manisa Provinces in Turkey 2022. Bacterial growth was obtained from 92% of the samples, and microbiological analysis identified 108 (54%) Escherichia coli isolates. In addition, Klebsiella spp. was identified in 35 (17.5%) samples, Proteus spp. in 23 (11.5%), Pseudomonas spp. in 18 (9%), and no bacterial growth was observed in 16 (8%) samples. mcr-1 (309 bp) and mcr–2 (567 bp) genes responsible for Colistin resistance was investigated in plasmid DNA extracted from 108 E. coli isolates obtained in the study, using the PCR method. However, neither mcr-1 nor mcr–2 genes were detected in any of the samples. In conclusion, the allele-specific PCR method was found sensitive and applicable for APEC identification and multiple drug resistance emerged in E. coli strains isolated according to the antibiogram results.

Downloads

Download data is not yet available.

References

Özavci V, Yüksel–Dolgun HT, Kirkan Ş. Phylogenetic characterization and determination of antibiotic susceptibility of avian pathogenic Escherichia coli strains isolated from broiler visceral organs. Rev. Cientif. FCV–LUZ. 2022; 32:1–8. doi: https://doi.org/j883.

Barnes HJ, Nolan LK, Waillancourt JP. Colibacillosis. In: Saif YM. (ed). Diseases of Poultry. 12nd. ed. USA. Blackwell Publishing Professional; 2008; p. 691–732.

Songer JG, Post KW. Veteriner Hekimlik Mikrobiyolojisi. 1st. ed. İstanbul: Nobel Tıp Kitapevleri. 2005; p. 113–120.

Köhler CD, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Intern. J. Med. Microbiol. 2011; 301(8):642–7. doi: https://doi.org/fkvv73.

Wang S, Meng Q, Dai J, Han X, Han Y. Development of an allele–specific PCR assay for simultaneous serotyping of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains. PLoS One. 2014; 9(5):e96904.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid–mediated Colistin resistance mechanism MCR–1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 2016; 16(2):161–8. doi: https://doi.org/987.

Xavier BB, Lammens C, Ruhal R, Kumar–Singh S, Butaye P, Goossens H, Malhotra–Kumar S. Identification of a novel plasmid–mediated Colistin–resistance gene, mcr–2, in Escherichia coli, Belgium, June 2016. Euro Surveill. 2016; 21(27):e1560–7917. doi: https://doi.org/f9ppdd.

Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 24th informational supplement (M100–S23). Wayne PA, USA: CLSI; 2014.

Subedi M, Luitel H, Devkota B, Bhattarai RK, Phuyal S, Panthi P, Shrestha A, Chaudhary DK. Antibiotic resistance pattern and virulence genes content in avian pathogenic Escherichia coli (APEC) from broiler chickens in Chitwan, Nepal. BMC Vet. Res. 2018; 14(1):113. doi: https://doi.org/j885.

Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 2010; 8:26–38.

Bhandari S., Singh S. Annual consumption of veterinary medicines and feed supplement in Nepal. NVJ. 2004; 28:25–32.

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 2015; 112:5649–54.

Bakhshi M, Bafghi MF, Astani A, Ranjbar VR, Zandi H, Vakili M. Antimicrobial resistance pattern of Escherichia coli isolated from chickens with colibacillosis in Yazd, Iran. J. Food Qual. Hazards Contr. 2017; 4:74–78.

Bist B, Sharma B, Jain U. Virulence associated factors and antibiotic sensitivity pattern of Escherichia coli isolated from cattle and soil. Vet. World. 2014; 3:69–72.

Basnyat B, Pokharel P, Dixit S, Giri S. Antibiotic use, its resistance in Nepal and recommendations for action: a situation analysis. J. Nepal Health. Res. Counc. 2015; 13:102–111.

Yang H, Chen S, White DG, Zhao S, Mc Dermott P, Walker R. Characterization of multiple–antimicrobial–resistant Escherichia coli isolates from diseased chickens and swine in China. J Clin. Microbiol. 2004; 42:3483–9. doi: https://doi.org/fv4s4d.

Kim TE, Jeong YW, Cho SH, Kim SJ, Kwon HJ. Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. J. Clin. Microbiol. 2007; 45:3309–3315.

Chitanand MP, Kadam TA, Gyananath G, Totewad ND, Balhal DK. Multiple antibiotic resistance indexing of coliforms to identify high risk contamination sites in aquatic environment. Indian J. Microbiol. 2010; 50(1):216–20.

Van Den Bogaard AE, London N, Driessen C, Stobberingh EE. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 2001; 47(6):763–71.

Caniaux I, Belkum A, Van Zambardi G, Poirel L, Gros MF. MCR: modern Colistin resistance. Eur. J. Clin. Microbiol. 2016; 35(9):1463–1465. doi: https://doi.org/j887.

Etebu E, Ukpong M. Bacterial resistance to antibiotics: Update on molecular perspectives. Microbiol. Res. Intern. 2016; 4(4):40–49.

Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and tigecycline resistance in carbapenemase–producing gram negative bacteria: emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016; 121(6):1377–1391. doi: https://doi.org/f84p4j.

Irrgang A, Roschanski N, Tenhagen BA, Grobbel M, Skladnikiewicz–Ziemer T, Thomas K, Käsbohrer A. Prevalence of mcr–1 in E. coli from livestock and food in Germany, 2010–2015. PLoS One. 2016; 11(7): e0159863. doi: https://doi.org/gbpph8.

Stoesser N, Mathers AJ, Moore CE, Day NP, Crook DW. Colistin resistance gene mcr–1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect. Dis. 2016; 16(3):285–6. doi: https://doi.org/j89b.

Suzuki S, Ohnishi M, Kawanishi M, Akiba M, Kuroda M. Investigation of a plasmid genome database for Colistin–resistance gene mcr–1. Lancet Infect. Dis. 2016; 16(3):284–5. doi: https://doi.org/j89c.

Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Skov RL. Detection of mcr–1 encoding plasmid–mediated Colistin resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveill. 2015; 20(49):1–5. doi: https://doi.org/j89f.

Haenni M, Poirel L, Kieffer N, Châtre P, Saras E, Métayer V, Madec JY. Co–occurrence of extended spectrum β–lactamase and MCR–1 encoding genes on plasmids. Lancet Infect. Dis. 2016; 16(3):281–282. doi: https://doi.org/grkdnz.

Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Käsbohrer A, Roesler U, Chakraborty T. Colistin resistance gene mcr–1 in extended–spectrum β–lactamase producing and carbapenemase–producing Gram–negative bacteria in Germany. Lancet Infect Dis. 2016;16(3):282–283. doi: https://doi.org/gk9prt.

Anjum MF, Duggett NA, AbuOun M, Randall L, Nunez–Garcia J, Ellis RJ, Teale C. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J Antimicrob. Chemother. 2016; 71(8):2306–2313. doi: https://doi.org/f837tj.

Zurfuh K, Poirel L, Nordmann P, Nüesch–Inderbinen M, Hächler H, Stephan R. Occurrence of the Plasmid–Borne mcr–1 Colistin resistance gene in extended spectrum–lactamase–producing Enterobacteriaceae in river water and imported vegetable samples in Switzerland. Antimicrob. Agents Chemother. 2016; 60(4):2594–5. doi: https://doi.org/j89g.

Grami R, Mansour W, Mehri W, Bouallègue O, Boujaâfar N, Madec J, Haenni M. Impact of food animal trade on the spread of mcr–1–mediated Colistin resistance, Tunisia, July 2015. Eurosurveill. 2016; 21(8):1–5. doi: https://doi.org/gm656x.

McGann P, Snesrud E, Maybank R, Corey B, Ong AC, Clifford R, Schaecher KE. Escherichia coli Harboring mcr–1 and blaCTX–M on a Novel IncF Plasmid: First report of mcr–1 in the USA. Antimicrob. Agents Chemother. 2016; 60(7):4420–1. doi: https://doi.org/gf5bf7.

Catry B, Cavaleri M, Baptiste K, Grave K, Grein K, Holm A, Jukes H, Liebana E, Navas AL, Mackay D, Magiorakos AP, Romo MA, Moulin G, Madero CM, Pomba MC, Powell M, Pyorala S, Rantala M, Ruzauskas M, Sanders P, Teale C, Threlfall EJ, Torneke K, Van Duijkeren E, Edo JT. Use of Colistin–containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Intern. J. Antimicrob. Agents. 2015; 46(3):297–306. doi: https://doi.org/f7qfnp.

Aghapour Z, Hasani A, Aghazadeh M, Ahangarzadeh M. Genes involved in Colistin resistance of Gram–negative isolates in the northwest of Iran. Gene Reports. 2019; 14:81–86. doi: https://doi.org/j89h.

Yang Y, Li Y, Lei C, Zhang A, Wang H. Novel plasmid–mediated Colistin resistance gene mcr–1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018; 73(7):1791–1795. doi: https://doi.org/gdqs2x.

Published
2023-05-15
How to Cite
1.
Parin U, Simsek G. Serotyping of Escherichia coli species isolated from broilers and determination of Colistin resistance. Rev. Cient. FCV-LUZ [Internet]. 2023May15 [cited 2024Dec.22];33(1):1-. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/40142
Section
Veterinary Medicine