Ruminal degradation and methane production in ruminants fed forage and pumpkin seed oil (Curcubita moschata)
Abstract
The use of vegetable oils is an option to reduce methane production in ruminal fermentation. In the present work, the effect of pumpkin seed oil (CSA) on CH4 production, rumen fermentation kinetics and dry matter degradation was evaluated, integrated into ruminant diets using the in vitro gas production technique. The treatments evaluated were six adding different levels of ASC to a base diet that consisted of Cynodon nlemfuensis: T1= 0% ASC+ 100% C. nlemfuensis; T2= 2% ASC + 98% C. nlemfuensis; T3= 3% ASC + 97% C. nlemfuensis; T4= 4% ASC + 96% C. nlemfuensis; T5= 5% ASC + 95% C. nlemfuensis; T6= 7% ASC + 93% C. nlemfuensis, 10 repetitions were used for each treatment analyzed under a completely randomized design and the means were evaluated through the Tukey test (P<0.05) using the statistical package for all of this. SAS. The unsaturated fatty acid content of the BSA was 67.2%, with the most abundant being linoleic and oleic acids (46.16 and 20.10% respectively). Regarding the results in methane (CH4) production, the ASC did not produce significant changes when it was incorporated into the diets, however, the medium fermentation fractions were improved and the slow fermentation fractions were reduced. On the other hand, when using ASC, raising the proportions to 4% affected by the degradation of dry matter (DGRMS), affecting the degradation of the fiber. According to what was obtained, inconsistency and variability was observed in the results, so the implementation of ASC as a CH4 mitigation strategy is not suggested due to the negative effects caused by DGRMS, despite meeting the characteristics that other oils have presented and are suggests deepening the chemical aspects of ASC.
Downloads
References
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister T, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Invited review: Current enteric methane mitigation options. J. Dairy Sci. [Internet]. 2022; 105(12):9297–9326. doi: https://doi.org/gsm8m7
Gaviria-Uribe X, Bolivar DM, Rosenstock TS, Molina-Botero IC, Chirinda N, Barahona R, Arango J. Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel cayman grass and its associations with two leucaena shrub legumes. Front. Vet. Sci. [Internet]. 2020 7:579189. doi: https://doi.org/gmtwtz
Króliczewska B, Pecka-Kiełb E, Bujok J. Strategies used to reduce methane emissions from ruminants: controversies and issues. Agriculture [Internet]. 2023; 13(3):602. doi: https://doi.org/g8s35g
Kamalanathan S, Houlahan K, Miglior F, Chud TCS, Seymour DJ, Hailemariam D, Plastow G, De Oliveira HR, Baes CF, Schenkel F. Genetic analysis of methane emission traits in holstein dairy cattle. Animals [Internet]. 2023; 13(8):1308. doi: https://doi.org/g8s35h
Yang Z, Liu S, Xie T, Wang Q, Wang Z, Yang H, Li S, Wang W . Effect of unsaturated fatty acid ratio In vitro on rumen fermentation, methane concentration, and microbial profile. Fermentation [Internet]. 2022; 8(10):540. doi: https://doi.org/nvj3
Castañeda-Rodríguez CS, Pámanes-Carrasco GA, Páez-Lerma JB, Herrera-Torres E, Araiza-Rosales EE, Hernández-Vargas V, Medrano-Roldán H, Reyes-Jáquez D. Effect of vegetable oils or glycerol on the in vitro ruminal production of greenhouse gases. Ruminants [Internet]. 2023; 3(2):140–148. doi: https://doi.org/g8s35j
Kargar S, Taasoli G, Akhlaghi A, Zamiri MJ. In vitro rumen fermentation pattern: insights from concentrate level and plant oil supplement. Arch. Anim. Breed. [Internet]. 2023; 466(1):1–8. doi: https://doi.org/g8s35k
Broucek J. Options to methane production abatement in ruminants: A review. J. Anim. Plant Sci. [Internet]. 2018 [consultado 25 May. 2024]; 28(2):348–364. Disponible en: https://goo.su/msc4
Bouazzaoui N, Mulengi JK. Fatty acids and mineral composition of melon (Cucumis Melo) and pumpkin (Cucurbita moschata) seeds. J. Herbs Spices Med. Plants [Internet]. 2018; 24(4):315–322. doi: https://doi.org/g8s35m
Rössel-Kipping D, Ortiz-Laurel H, Amante-Orozco A, Durán-García HM, López-Martínez LA. Características físicas y químicas de la semilla de calabaza para mecanización y procesamiento. Nova Scientia [Internet]. 2018; 10(21):61–77. doi: https://doi.org/g8s35n
Ramírez-Díaz R, Pinto-Ruiz R, Miranda-Romero LA, La O-Arias MA, Hernández-Sánchez D, Raj-Aryal D. Predicción de metano de dos frutos arbóreos por cromatografía de gases y gas In vitro. Ecosist. Recur. Agropec. [Internet]. 2023; 10(3):e3602. doi: https://doi.org/g8s35p
García E. Modificaciones al sistema de clasificación climática de Köppen. 5a ed. Mexico: Universidad Nacional Autónoma de México, Instituto de Geografía; 2004. p.79-86.
AOAC International. Official methods of analysis of AOAC International. 18th ed. Gaithersburg (MD, USA): AOAC International; 2005. 1015 p.
Oteri M, Bartolomeo G, Rigano F, Aspromonte J, Trovato E, Purcaro G, Dugo P, Mondello L, Beccaria M. Comprehensive chemical characterization of Chia (Salvia hispanica L.) seed oil with a focus on minor lipid components. Foods [Internet]. 2023; 12(1):23. doi: https://doi.org/g8s35q
National Research Council (NRC). Energy. In: Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press. 2007; p. 39-80.
Kumar S, Choudhury PK, Carro MD, Griffith GW, Dagar SS, Puniya M, Calabro S, Ravella SR, Dhewa T, Upadhyay RC, Sirohi SK, Kundu SS, Wanapat M, Puniya AK. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. [Internet]. 2014; 98(1):31-44. doi: https://doi.org/f5msgr
Menke K, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988; 28:7–55.
Schofield P, Pell AN. Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. J. Anim. Sci. [Internet]. 1995; 73(11):3455–3463. doi: https://doi.org/g8s35r
Miranda-Romero LA, Sandoval-González L, Amendola-Massiotti R. Producción de gas como método para estimar in vitro la concentración de carbohidratos fermentables en rumen. ALPA [Internet]. 2015; 23(Suppl. 1):145. Disponible en: https://goo.su/aUGMUEl
Bartha R, Pramer D. Features of flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci. [Internet]. 1965 [consultado 21 Ene. 2024]; 100(1):68-70. Disponible en: https://goo.su/sZbzMH
Zhong RZ, Fang Y, Sun HX, Wang M, Zhou DW. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. J. Integr. Agric [Internet]. 2016; 15(2):414–423. doi: https://doi.org/g8s35s
SAS Institute Inc. 2002. SAS/STAT Ver. 6.2.9200. User´s Guide. Cary, NC (USA): SAS Institute Inc.
Torres RNS, Moura DC, Ghedini CP, Ezequiel JMB, Almeida MTC. Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Rumin. Res. [Internet]. 2020; 189:106148. doi: https://doi.org/g8s35t
Samal L, Dash SK. Nutritional interventions to reduce methane emissions in ruminants. In: Kumar Patra A, editor. Animal Feed Science and Nutrition - Production, Health and Environment [Internet]. Londres: IntechOpen Limited; 2022. 19 p. doi: https://doi.org/g8s35v
Orozco-Durán KE, Herrera-Camacho J, Castelán-Ortega OA, Márquez-Benavides L, Buenrostro-Delgado O, Kú-Vera JC. Reducción de la metanogénesis ruminal in vitro con aceites vegetales de Thevetia peruviana y Persea americana. Ecosist. Recur. Agropec. [Internet]. 2016 [consultado 10 Ene. 2024]; 3(9):335–344. Disponible en: https://goo.su/LyNuMzP
Garcia F, Colombatto D, Brunetti M, Martínez JM, Moreno VM, Scorcione Turcato M, Lucini E, Frossasco G, Martínez Ferrer J. The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals [Internet]. 2020; 10(5):786. doi: https://doi.org/g8s35w
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E. Enteric methane mitigation interventions. Transl. Anim. Sci. [Internet]. 2022; 6(2):1–16. doi: https://doi.org/g8s35x
Kholif AE, Olafadehan OA. Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. [Internet]. 2021; 20(6):1087–1108. doi: https://doi.org/g8s35z
Méndez-Rodríguez L. Optimización de la digestión anaerobia de microrganismos fotosintéticos: pretratamiento térmico y uso de cianobacterias [tesis doctoral en Internet]. España: Universidad Complutense de Madrid; 2018. [consultado 10 Ene. 2024]. 271 p. Disponible en: https://goo.su/lIQVrk0
Elsamadony M, Mostafa A, Fujii M, Tawfik A, Pant D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Res. [Internet]. 2021; 190:116732. doi: https://doi.org/gnmqf7
Avato P, Tava A. Rare fatty acids and lipids in plant oilseeds: occurrence and bioactivity. Phytochem. Rev. [Internet]. 2021; 21:401–428. doi: https://doi.org/gs5zsp
Copyright (c) 2024 René Pinto-Ruiz, Roselia Ramírez-Díaz, David Hernández-Sánchez, Manuel La O–Arias, José Apolonio Venegas-Venegas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.