Effect of Astragalus microcephalus wild extract and Vitamin E–Selenium combination on Cadmium–induced damage in rat ovaries

  • Begum Kurt Sivas Cumhuriyet University, Faculty of Medicine, Department of Obstetrics and Gynecology. Sivas,Türkiye
  • Haki Kara Sivas Cumhuriyet University, Faculty of Veterinary, Department of Pharmacology and Toxicology. Sivas, Türkiye
  • Mahmut Sahın Sivas Cumhuriyet University, Faculty of Veterinary, Department of Pharmacology and Toxicology. Sivas, Türkiye
  • Alper Serhat Kumru Sivas Cumhuriyet University, Faculty of Veterinary, Department of Pharmacology and Toxicology. Sivas, Türkiye
  • Mustafa Ozcaraca Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Pathology. Merkez, Sivas, Türkiye
Keywords: Cadmium, ovarium damage, Astragalus, oxidative stress

Abstract

This study was conducted to investigate the protective effect of Astragalus (AST) extract alone and in combination with vitamin E (vit E) + selenium (Se) against the toxicity induced by cadmium (CdCl2) in rat ovaries. Thirty–six female Wistar rats were divided into six groups. AST was administered at a dose of 5 mg·kg-1, Cd at a dose of 2 mg·kg-1, and Vit E (60 mg·kg-1) + Se (1 mg·kg-1) orally for a duration of 15 days. The levels of MDA, GSH–Px, SOD, and CAT were analyzed in the blood and tissue samples to assess oxidative stress. Additionally, the levels of estrogen, FSH, LH, Inhibin B, and Antimullerian hormones were measured in the serum samples. The ovarian tissues were examined histopathologically and immunohistochemically for 8–OhDG, Caspase 3, and LC3B immunoreactivity. In the group exposed to CdCl2, MDA levels significantly increased, while antioxidant parameters showed significant decreases (P<0.05). Although significant improvements were observed in the groups treated with AST alone, more significant improvements were seen in the groups treated with both AST and Vit E + Se (P<0.05). It was concluded that AST extracts alone and in combination with Vit E + Se exhibited protective effects against ovarian toxicity caused by Cd exposure and may be effective against metal toxicity.

Downloads

Download data is not yet available.

References

Krockova J, Roychoudhury S, Slanina T, Formicki G, Binkowski LJ, Ondruska L, Lukac N, Kovacova R, Stawarz R, Massanyi P. Lead induced alterations in rabbit spermatozoa motility and morphology in vitro. Czech J. Anim. Sci. [Internet]. 2016; 61(9):391–406. doi: https://doi.org/f88r6w

Zhu Q, Li X, Ge RS. Toxicological effects of cadmium on mammalian testis. Front. Genet. [Internet]. 2020; 11:527. https://doi.org/g8sh2n

Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN. Mechanism and health effects of heavy metal toxicity in humans. In: Karcıoglu O, Arslan B, editors. Poisoning in the modern world – New tricks for an old dog? London: IntechOpen, 2019. p. 70–101

Mezynska M, Brzóska MM. Environmental exposure to cadmium—A risk for health of the general population in industrialized countries and preventive strategies. Environ. Sci. Pollut. Res. Int. [Internet]. 2018; 25(4):3211–3232. doi: https://doi.org/gc3ddh

Hirano S, Suzuki KT. Exposure, metabolism, and toxicity of rare earths and related compounds. EHP [Internet]. 1996; 104(suppl1):85–95. doi: https://doi.org/bh8q74

Satarug S, C. Gobe GC, Vesey DA, Phelps KR. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics [Internet]. 2020; 8(4):86. doi: https://doi.org/gtmdnn

Massányi P, Massányi M, Madeddu R, Stawarz R, Lukáč N. Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics [Internet]. 2020; 8(4):94. doi: https://doi.org/gwd46r

Wang Y, Wang X, Wang Y, Fan R, Qiu C, Zhong S, Wei L, Luo D. Effect of cadmium on cellular ultrastructure in mouse ovary. Ultrastruct. Pathol. [Internet]. 2015; 39(5):324–328. doi: https://doi.org/g8sh2p

Tian J, Hu J, He W, Zhou L, Huang Y. Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring. Comp. Biochem. Physiol. C, Toxicol. Pharmacol. [Internet]. 2020; 234:108782. doi: https://doi.org/ggtwcx

Nasiadek M, Danilewicz M, Klimczak M, Stragierowicz J, Kilanowicz A. Subchronic exposure to cadmium causes persistent changes in the reproductive system in female wistar rats. Oxid. Med. Cell. Longev. [Internet]. 2019; 2019:6490820. doi: https://doi.org/g8sh2q

Li X, Liu J, Wu S, Zheng W, Li H, Bao S, Chen Y, Guo X, Zhang L, Ge R. In utero single low–dose exposure of cadmium induces rat fetal Leydig cell dysfunction. Chemosphere [Internet]. 2018; 194:57–66. doi: https://doi.org/gcz33m

Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. [Internet]. 2009; 238(3):209–214. doi: https://doi.org/dgz493

Samuel JB, Stanley JA, Princess RA, Shanthi P, Sebastian MS. Gestational cadmium exposure–induced ovotoxicity delays puberty through oxidative stress and impaired steroid hormone levels. J. Med. Toxicol. [Internet]. 2011; 7:195–204. doi: https://doi.org/btvqvx

Ognjanović BI, Pavlović SZ, Maletić SD, Zikić RV, Stajn AS, Radojicić RM, Saicić ZS, Petrović VM. Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiol. Res. [Internet]. 2003 [cited 22 Feb. 2024]; 52(5):563–570. PMID: 14535831. Available in: https://goo.su/VDtd

Ruslee SS, Zaid SSM, Bakrin IH, Goh YM, Mustapha NM. Protective effect of Tualang honey against cadmium–induced morphological abnormalities and oxidative stress in the ovary of rats. BMC Complement. Med. Ther. [Internet]. 2020; 20(160):1–11. doi: https://doi.org/g8sh2r

Nna VU, Usman UZ, Ofutet EO, Owu DU. Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride–induced oxidative stress in the uterus and ovaries of female Wistar rats. Food Chem. Toxicol. [Internet]. 2017; 102:143–155. doi: https://doi.org/f93npz

Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol. [Internet]. 2020; 11:349. doi: https://doi.org/gj322p

Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, Zhang H, Yang S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. [Internet]. 2014;28(9):1275–83. doi: https://doi.org/f6kk6m

Graziani V, Scognamiglio M, Esposito A, Fiorentino A, D’Abrosca B. Chemical diversity and biological activities of the saponins isolated from Astragalus genus: focus on Astragaloside IV. Phytochem. Rev. [Internet]. 2019; 18(4):1133–1166. doi: https://doi.org/g8sh2s

Sinclair S. Chinese herbs: a clinical review of Astragalus, Ligusticum, and Schizandrae. Altern. Med. Rev. [Internet]. 1998 [cited 25 Mar. 2024]; 3(5)338–344. PMID: 9802911. Available in: https://goo.su/Ui4AzZe

Anderson D, Grant D. The chemical characterization of some Astragalus gum exudates. Food Hydrocoll. [Internet]. 1988; 2(5):417–423. doi: https://doi.org/ckm3t3

Zhang X, Yao K, Ren L, Chen T, Yao D. Protective effect of Astragalus polysaccharide on endothelial progenitor cells injured by thrombin. Int. J. Biol. Macromol. [Internet]. 2016; 82:711–718. doi: https://doi.org/f75rph

Huang WM, Liang YQ, Tang LJ, Ding Y, Wang XH. Antioxidant and anti–inflammatory effects of Astragalus polysaccharide on EA.hy926 cells. Exp. Ther. Med. [Internet]. 2013; 6(1):199–203. doi: https://doi.org/gk9cgp

Lu Y, Xing Q–Q, Xu J–Y, Ding D, Zhao X. Astragalus polysaccharide modulates ER stress response in an OVA–LPS induced murine model of severe asthma. Int. J. Biol. Macromol. [Internet]. 2016; 93(Part. A):995–1006. doi: https://doi.org/f9f2hz

Tin MM, Cho C–H, Chan K, James AE, Ko JK. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft. Carcinogenesis [Internet]. 2007; 28(6):1347–1355. doi: https://doi.org/bmvx4p

Liu P, Zhao H, Luo Y. Anti–aging implications of Astragalus membranaceus (Huangqi): a well–known Chinese tonic. Aging Dis. [Internet]. 2017; 8(6):868–886. doi: https://doi.org/gqcgdq

Block KI, Mead MN. Immune system effects of echinacea, ginseng, and astragalus: a review. Integr. Cancer Ther. [Internet]. 2003; 2(3):247–267. doi: https://doi.org/dkbgmm

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. [Internet]. 1979; 95(2):351–358. doi: https://doi.org/bktx4x

Nampoothiri LP, Gupta S. Simultaneous effect of lead and cadmium on granulosa cells: a cellular model for ovarian toxicity. Reprod. Toxicol. [Internet]. 2006; 21(2):179–185. doi: https://doi.org/d66q8v

Paksy K, Rajczy K, Forgács Z, Lázár P, Bernard A, Gáti I, Kaali G. Effect of cadmium on morphology and steroidogenesis of cultured human ovarian granulosa cells. J. Appl. Toxicol. [Internet]. 1997; 5(5):321–327. doi: https://doi.org/ffhj88

Gobe G, Crane D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol. Lett. [Internet]. 2010; 198(1):49–55. doi: https://doi.org/d58rrj

Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health [Internet]. 2020; 17(11):3782. doi: https://doi.org/gpwrpb

Tribowo J, Arizal M, Nashrullah M, Aditama A, Utama D. Oxidative stress of cadmium–induced ovarian rat toxicity. Int. J. Chem. Eng. [Internet]. 2014; 5(3):254. doi: https://doi.org/g8sh2t

Altuner D, Gulaboglu M, Yapca OE, Cetin N. The effect of mirtazapine on cisplatin–induced oxidative damage and infertility in rat ovaries. Scientif. World J. [Internet]. 2013; 2013(327240):1–6. doi: https://doi.org/gb7w7s

Kim SH, Lee IC, Baek HS, Shin IS, Moon C, Bae CS, Kim SH, Kim JC, Kim HC. Mechanism for the protective effect of diallyl disulfide against cyclophosphamide acute urotoxicity in rats. Food Chem. Toxicol. [Internet]. 2014; 64:110–118. doi: https://doi.org/f5sjft

Eldutar E, Kandemir FM, Kucukler S, Caglayan C. Restorative effects of Chrysin pretreatment on oxidant–antioxidant status, inflammatory cytokine production, and apoptotic and autophagic markers in acute paracetamol‐induced hepatotoxicity in rats: an experimental and biochemical study. J. Biochem. Molec. Toxicol. [Internet]. 2017; 31(11):e21960. doi: https://doi.org/g8sh2v

Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. LC3/GABARAP family proteins: autophagy‐(un)related functions. FASEB J. 2016; 30(12):3961–3978. doi: https://doi.org/gf3r6d

Published
2024-12-01
How to Cite
1.
Kurt B, Kara H, Sahın M, Kumru AS, Ozcaraca M. Effect of Astragalus microcephalus wild extract and Vitamin E–Selenium combination on Cadmium–induced damage in rat ovaries. Rev. Cient. FCV-LUZ [Internet]. 2024Dec.1 [cited 2024Dec.12];34(3):9. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/42969
Section
Veterinary Medicine