Pathological Investigation of Double–Stranded DNA Breaks and DNA Oxidation in Natural Infection with Mycobacterium avium subspecies paratuberculosis in Goats
Abstract
Paratuberculosis, created by Mycobacterium avium subspecies paratuberculosis (MAP), manifests as a chronic affliction marked by persistent diarrhoea and granulomatous enteritis, pervasive in both domestic and global wild ruminants. In this investigation, DNA disruption in lesioned tissues of goat as natural infecte with MAP was pathologically assessed. Accordingly, goats manifesting symptoms suggestive to paratuberculosis, including pronounced emaciation and continual episodic diarrhoea, were subjected to an ELISA diagnostic procedure to ascertain the presence of MAP. This diagnostic approach confirmed the presence of the infectious agent in 20 patients. These patients were subsequently euthanized, and tissue samples from intestinal and regional lenf nods. It were subjected to Hematoxylin and Eosin (HE) staining for histopathological investigatıon, Ziehl Neelsen (ZN) staining to identify acid–fast mycobacteria, γ–H2AX to discern disruptions in double stranded DNA, and 8–Ohdg to detect DNA oxidation by immunohistochemical (IHC) method. Gross anatomical observation serous adipose atrophy, augmented dimensions of mesenterial lymphatic nodes, mucosal hypertrophy and non–retractable mucosal undulations. Histological assessment highlighted epithelial cellular degeneration, an abundance of epithelioid macrophages, lymphocytes, plasmocytes, infiltrating in mucosa. Acid–fast entities, discernible through ZN staining, appeared as luminescent red conglomerates in intestinal and mesenterial tissue. The immunohistochemical analyses evinced positive results for both γ–H2AX and 8–Ohdg across all sampled tissues. Intriguingly, this investigation presented the inaugural global evidence of γ–H2AX and 8–Ohdg expression in a natural MAP infection, demonstrating that this pathological agent precipitates DNA degradation and oxidation, thereby augmenting comprehension of the disease’s pathogenesis.
Downloads
References
Idris SM, Eltom KH, Okuni JB, Ojok L, Elmagzoub WA, El Wahed AA, Eltayeb ES, Gameel AA. Paratuberculosis: The hidden killer of small ruminants. Animals. [Internet]. 2021; 12(1):12. doi: https://doi.org/grhbk3
Verin R, Perroni M, Rossi G, De Grossi L, Botta R, De Sanctis B, Rocca S, Cubeddu T, Crosby–Durrani H, Taccini E. Paratuberculosis in sheep: Histochemical, immunohistochemical and in situ hybridization evidence of in utero and milk transmission. Res. Vet. Sci. [Internet]. 2016; 106(2016):173–179. doi: https://doi.org/f8rkt8
Roller M, Hansen S, Knauf–Witzens T, Oelemann WMR, Czerny CP, Abd El Wahed A, Goethe R. Mycobacterium avium subspecies paratuberculosis infection in Zoo animals: A review of susceptibility and disease process. Front. Vet. Sci. [Internet]. 2020; 7:572724. doi: https://doi.org/m4pz
Roberto JPdL, Limeira CH, Barnabé NNdC, Soares RR, Silva MLCR, Gomes AAdB, Higino SSdS, de Azevedo SS, Alves CJ. Antibody detection and molecular analysis for Mycobacterium avium subspecies paratuberculosis (MAP) in goat milk: Systematic review and meta–analysis. Res. Vet. Sci. [Internet]. 2021; 135:72–77. doi: https://doi.org/m4p2
Mikkelsen H, Aagaard C, Nielsen SS, Jungersen G. Review of Mycobacterium avium subsp. paratuberculosis antigen candidates with diagnostic potential. Vet. Microbiol. [Internet]. 2011; 152(1–2):1–20. doi: https://doi.org/dckknv
Sweeney RW. Pathogenesis of paratuberculosis. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2011; 27(3):537–546. doi: https://doi.org/ct2bgc
Dennis MM, Reddacliff LA, Whittington RJ. Longitudinal study of clinicopathological features of Johne’s disease in sheep naturally exposed to Mycobacterium avium subspecies paratuberculosis. Vet. Pathol. [Internet]. 2011; 48(3):565–575. doi: https://doi.org/c3rdj4
Collins MT. Diagnosis of paratuberculosis. Vet. Clin. North Am. Food Anim. Pract. [Internet]. 2011; 27(3):581–591. doi: https://doi.org/bxzvsw
Lawrence J, Karpuzoglu E, Vance A, Vandenplas M, Saba C, Turek M, Gogal Jr RM. Changes in γ–H2AX expression in irradiated feline sarcoma cells: an indicator of double strand DNA breaks. Res. Vet. Sci. [Internet]. 2013; 94(3):545–548. doi: https://doi.org/f4w26t
Waterman DP, Haber JE, Smolka MB. Checkpoint responses to DNA double–strand breaks. Annu. Rev. Biochem. [Internet]. 2020; 89:103–133. doi: https://doi.org/ghqjkx
Omari Shekaftik S, Nasirzadeh N. 8–Hydroxy–2′–deoxyguanosine (8–OHdG) as a biomarker of oxidative DNA damage induced by occupational exposure to nanomaterials: A systematic review. Nanotoxicology. [Internet]. 2021; 15(6):850–864. doi: https://doi.org/m4p5
AbuArrah M, Setianto BY, Faisal A, Sadewa AH. 8–Hydroxy–2–deoxyguanosine as oxidative DNA damage biomarker of medical ionizing radiation: A scoping review. J. Biomed. Phys. Eng. [Internet]. 2021; 11(3):389–402. doi: https://doi.org/gj8vzw
Dörtbudak M, Sağlam Y, Yıldırım S, Timurkan M. Examen de adenovirus con métodos moleculares y patológicos en casos de pneumonía ovina. Rev. MVZ Córdoba. [Internet]. 2022; 27(Supl):e2738. doi: https://doi.org/mqsc
Kravitz A, Pelzer K, Sriranganathan N. The paratuberculosis paradigm examined: a review of host genetic resistance and innate immune fitness in Mycobacterium avium subsp. paratuberculosis infection. Front. Vet. Sci. [Internet]. 2021; 8:721706. doi: https://doi.org/m4p8
Krüger C, Köhler H, Liebler–Tenorio EM. Cellular composition of granulomatous lesions in gut–associated lymphoid tissues of goats during the first year after experimental infection with Mycobacterium avium subsp. paratuberculosis. Vet. Immunol. Immunopathol. [Internet]. 2015; 163(1–2):33–45. doi: https://doi.org/m4p9
Khodakaram Tafti A, Rashidi K. The pathology of goat paratuberculosis: Gross and histopathological lesions in the intestines and mesenteric lymph nodes. J. Vet. Med. B. [Internet]. 2000; 47(7):487–495. doi: https://doi.org/cgqvr9
Hailat NQ, Hananeh W, Metekia AS, Stabel JR, Al–Majali A, Lafi S. Pathology of subclinical paratuberculosis (Johne’s Disease) in Awassi sheep with reference to its occurrence in Jordan. Vet. Med. – Czech [Internet]. 2010; 55(12):590–602. doi: https://doi.org/m4qb
Kheirandish R, Sami M, Khalili M, Shafaei K, Azizi S. Diagnosis of paratuberculosis in fresh and paraffin embedded samples by histopathology, PCR and immunohistochemistry techniques. Bulg. J. Vet. Med. [Internet]. 2017; 20(4):339–347. doi: https://doi.org/m4qc
Derakhshandeh A, Namazi F, Khatamsaz E, Eraghi V, Hemati Z. Goat paratuberculosis in Shiraz: Histopathological and molecular approaches. Vet. Res. Forum. [Internet]. 2018; 9(3):253–257. doi: https://doi.org/m4qd
Zarei–Kordshouli F, Geramizadeh B, Khodakaram–Tafti A. Prevalence of Mycobacterium avium subspecies paratuberculosis IS 900 DNA in biopsy tissues from patients with Crohn’s disease: histopathological and molecular comparison with Johne’s disease in Fars province of Iran. BMC Infect. Dis. [Internet]. 2019; 19(23):1–11. doi: https://doi.org/m4qf
Hemida H, Kihal M. Detection of paratuberculosis using histopathology, immunohistochemistry, and ELISA in West Algeria. Comp. Clin. Pathol. [Internet]. 2015; 24:1621–1629. doi: https://doi.org/m4qg
Smeed JA, Watkins CA, Rhind SM, Hopkins J. Differential cytokine gene expression profiles in the three pathological forms of sheep paratuberculosis. BMC Vet. Res. [Internet]. 2007; 3(18):1–11. doi: https://doi.org/dsfjx5
Sonawane GG, Tripathi BN. Expression of inflammatory cytokine and inducible nitric oxide synthase genes in the small intestine and mesenteric lymph node tissues of pauci–and multibacillary sheep naturally infected with Mycobacterium avium ssp. paratuberculosis. Int. J. Mycobacteriol. [Internet]. 2016; 5(Suppl. 1):S77–S78. doi: https://doi.org/m4qh
Souliotis VL, Vlachogiannis NI, Pappa M, Argyriou A, Ntouros PA, Sfikakis PP. DNA damage response and oxidative stress in systemic autoimmunity. Int. J. Mol. Sci. [Internet]. 2019; 21(1):55. doi: https://doi.org/m4qj
Kumar N, Raja S, Van Houten B. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res. [Internet]. 2020; 48(20):11227–11243. doi: https://doi.org/m4qk
Bozukluhan K, Merhan O, Büyük F, Akyüz E, Gezer T, Eğritağ HE, Gökçe G. [Determination of Some Acute Phase Protein and Biochemical Parameter Levels in Cattle Infected with Mycobacterium avium subsp. paratuberculosis]. Bozok Vet. Sci. [Internet]. 2022 [cited 26 Oct. 2023]; 3(2):47–51. Turkish. Available in: https://goo.su/5zZVXrl
El–Deeb WM, Fouda TA, El–Bahr SM. Clinico–biochemical Investigation of Paratuberculosis of Dromedary Camels in Saudi Arabia: Proinflammatory Cytokines, Acute Phase Proteins and Oxidative Stress Biomarkers. Pak. Vet. J. [Internet]. 2014 [cited 18 Oct. 2023]; 34(4):484–488. Available in: https://goo.su/BaJnpB
Nakamura AJ, Suzuki M, Redon CE, Kuwahara Y, Yamashiro H, Abe Y, Takahashi S, Fukuda T, Isogai E, Bonner WM. Fukumoto M. The causal relationship between DNA damage induction in bovine lymphocytes and the Fukushima nuclear power plant accident. Radiat. Res. [Internet]. 2017; 187(5):630–636. doi: https://doi.org/f9sxc9
Toyoda T, Cho YM, Akagi JI, Mizuta Y, Hirata T, Nishikawa A, Ogawa K. Early detection of genotoxic urinary bladder carcinogens by immunohistochemistry for γ–H2AX. Toxicol. Sci. [Internet]. 2015; 148(2):400–408. doi: https://doi.org/f74t2c
Fradet–Turcotte A, Bergeron–Labrecque F, Moody CA, Lehoux M, Laimins LA, Archambault J. Nuclear accumulation of the papillomavirus E1 helicase blocks S–phase progression and triggers an ATM–dependent DNA damage response. J. Virol. [Internet]. 2011; 85(17):8996–9012. doi: https://doi.org/c3hrxd
Sakakibara N, Mitra R, McBride AA. The papillomavirus E1 helicase activates a cellular DNA damage response in viral replication foci. J. Virol. [Internet]. 2011; 85(17):8981–8995. doi: https://doi.org/cjgd8b
Espinosa J, de la Morena R, Benavides J, García–Pariente C, Fernández M, Tesouro M, Arteche N, Vallejo R, Ferreras MC, Pérez V. Assessment of acute–phase protein response associated with the different pathological forms of bovine paratuberculosis. Animals. [Internet]. 2020; 10(10):1925. doi: https://doi.org/m4qm
Karakurt E, Beytut E, Dağ S, Nuhoğlu H, Yıldız A, Kurtbaş E. Assessment of MDA and 8–OHdG expressions in ovine pulmonary adenocarcinomas by immunohistochemical and immunofluorescence methods. Acta Vet. Brno. [Internet]. 2022; 91(3):235–241. doi: https://doi.org/m4qn
Karakurt E. Immunohistochemical Investigation of Oxidative Stress–induced DNA Damage and Lipid Peroxidation in Bovine Papillomas and Fibropapillomas. Van Vet J. [Internet]. 2021; 32(1):22–27. doi: https://doi.org/m4qp
Copyright (c) 2024 Muhammet Bahaeddin Dörtbudak, Merve Öztürk
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.