Determination of Embryotoxic effects of Atipamezole using in ovo model
Abstract
Atipamezole is a specific α2-adrenergic receptor antagonist, and there exists insufficient information on its use during pregnancy. The aim of this study was to determine the embryotoxic activity of Atipamezole through an in ovo method. During the first stage of the study, 210 fertile eggs were divided into seven groups of 30 fertile eggs and placed in an incubator. On the seventh day of the first stage, no application was made to the control group. The second group was administered 50 microliters (µL) of saline solution, while the other groups were given Atipamezole at doses of 250, 125, 62.5, 31.25 and 15.62 micrograms·egg-1 (µg·egg-1) in 50 µL saline solution. In the second stage, according to the embryotoxic dose range determined from the first stage, 150 fertile eggs were divided into five groups of 30 fertile eggs and placed in an incubator. On the seventh day of the second stage, no application was made to the control group. Fifty µL of saline solution was administered to the second group. The other groups were given Atipamezole at doses of 220, 190 and 160 µg·egg-1 in 50 µL saline solution. After the incubation period, the eggs hatched, and the embryonic mortality rates were calculated. The mortality rate was determined to be 39.3% at the highest dose (250 µg·egg-1 = 5 miligrams·kilograms-1 –mg·kg-1–) (P<0.05), while the mortality rate at other doses was determined to be the same as the control group (P>0.05). In conclusion, it can be stated that the dose determined for Atipamezole in this study was very high compared to the recommended doses and it can be used in pregnancy as a benefit-loss calculation when necessary. However molecular or histopathological studies regarding the development of organ drafts are necessary to determine the safety of its use during pregnancy.
Downloads
References
AHO, M.; ERKOLA, O.; KALLIO, A.; SCHEININ, H.; KORTTILA, K. Comparison of dexmedetomidine and midazolam sedation and antagonism of dexmedetomidine with atipamezole. J. Clin. Anesth. 5(3): 194–203. 1993. https://doi.org/dbqhjc.
ARNEMO, J.; SOLI, N. Chemical capture of free-ranging cattle: immobilization with xylazine or medetomidine, and reversal with atipamezole. Vet. Res. Commun. 17(6): 469–477. 1993. https://doi.org/bz2srx.
ARNEMO, J.; SOLI, N. Immobilization of free-ranging cattle with medetomidine and its reversal by atipamezole. Vet. Res. Commun. 19(1): 59–62. 1995.
BERLAN, M.; MONTASTRUC, J.L.; LAFONTAN, M. Pharmacological prospects for α2-adrenoceptor antagonist therapy. Trends Pharmacol. Sci. 13: 277–282. 1992. https://doi.org/ftwshs.
CANBAR, R.; AKCAKAVAK, G.; USLU, M.; BAS, A. Determination of embryotoxic effects of Tarantula cubensis alcoholic extract with in ovo model. Magy Allatorvosok Lapja. 143(8): 497–504. 2021.
CANBAR, R.; USLU, M.; TUFAN, O.; YAZAR, E. Determination of embryotoxic dose limit of detomidine with in-ovo model. Eurasian J. Vet. Sci. 37: 71–75. 2021. https://doi.org/gkjqqc.
DEMATTEIS, A.; MENZANO, A.; CANAVESE, G.; MENEGUZ, P.G.; ROSSI, L. Anaesthesia of free-ranging Northern chamois (Rupicapra rupicapra) with xylazine/ketamine and reversal with atipamezole. Eur. J. Wildl. Res. 55(6): 567–573. 2009. https://doi.org/fbfzz2.
DEMATTEIS, A.; ROSSI, L.; CANAVESE, G.; MENZANO, A.; MENEGUZ, P. Immobilising free‐ranging Alpine chamois with xylazine, reversed with atipamezole. Vet. Rec. 163(6): 184–189. 2008. https://doi.org/dz5n47.
ENGLAND, G.; CLARKE, K. Alpha2 adrenoceptor agonists in the horse—A review. Br. Vet. J. 152(6): 641–657. 1996. https://doi.org/c47pqm.
FAGERHOLM, V.; HAAPARANTA, M.; SCHEININ, M. α2‐Adrenoceptor regulation of blood glucose homeostasis. Basic Clin. Pharmacol. Toxicol. 108(6): 365–370. 2011. https://doi.org/bgb8g8.
HAMILTON, J.W.; DENISON, M.S.; BLOOM, S.E. Development of basal and induced aryl hydrocarbon (benzo [a] pyrene) hydroxylase activity in the chicken embryo in ovo. Proc. Natl. Acad. Sci. USA. 80(11): 3372–3376. 1983. https://doi.org/d2jk7m.
HILL, E.; HOFFMAN, D. Avian models for toxicity testing. J. Am. Coll. Toxicol. 3(6): 357–376. 1984. https://doi.org/bc244f.
HUGNET, C.; BURONFOSSE, F.; PINEAU, X.; CADORE, J.; LORGUE, G.; BERNY, P.J. Toxicity and kinetics of amitraz in dogs. Am. J. Vet. Res. 57(10): 1506–1510. 1996.
JELINEK, R.; PETERKA, M.; RYCHTER, Z. Chick embryotoxicity screening test--130 substances tested. Indian J. Exp. Biol. 23(10): 588–595. 1985.
JELINEK, R. Use of chick embryo in screening for embryotoxicity. Teratog. Carcinog. Mutagen. 2(3–4): 255–261. 1982. https://doi.org/ch6ffn.
OZPARLAK, H. The use of chick embryos in embryotoxicity and teratogenicity tests. SUFEFD. 40: 13–22. 2015.
PERTOVAARA, A.; HAAPALINNA, A.; SIRVIÖ, J.; VIRTANEN, R. Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective α2‐adrenoceptor antagonist. CNS Drug. Rev. 11: 273–288. 2005. https://doi.org/c9kzds.
PROUDFOOT, A.T. Poisoning with amitraz. Toxicol. Rev. 22(2): 71–74. 2003. https://doi.org/ck5fkg.
SCHEININ, M.; LOMASNEY, J.W.; HAYDEN-HIXSON, D.M.; SCHAMBRA, U.B.; CARON, M.G.; LEFKOWITZ, R.J.; FREMEAU JR, R.T. Distribution of α2-adrenergic receptor subtype gene expression in rat brain. Brain Res. Mol. Brain. Res. 21(1–2): 133–149. 1994. https://doi.org/fb6qnm.
SEPPALA, T.; IDANPAAN-HEIKKILA, J.J.; STROMBERG, C.; MATTILA, M.J. Ethanol antagonism by atipamezole on motor performance in mice. Life Sci. 55(3): 245–251. 1994. https://doi.org/b8j56x.
SINN, L. Advances in behavioral psychopharmacology. Vet. Clin. North. Am. Small. Anim. Pract. 48(3): 457–471. 2018. https://doi.org/gdjnvv.
SOVERI, T.; SANKARI, S.; SALONEN, J.S.; NIEMINEN, M. Effects of Immobilization with Medetomidine and Reversal with Atipamezole on Blood Chemistry of Semi-Domesticated Reindeer (Rangifer tarandus tarandus L.) in Autumn and Late Winter. Acta Vet. Scand. 40(4): 335-349. 1999. https://doi.org/j2p6.
TRAS, B.; ELMAS, M. Painkillers, Antipyretic and Antiinflammatory Drugs In: Veterinary Medicines Guide and Treatment Manual. Yazar, E (Ed). Nobel Tip Press. Istanbul, Turkey. Pp 327–352. 2021.
USLU, M.; CANBAR, R.; AKCAKAVAK, G.; YAZAR, E. Determination of the embryotoxic effect of maropitant using an in ovo model. Pol. J. Vet. Sci. 25(2): 357–359. 2022. https://doi.org/j2p7.
YAZAR, E. Veterinary vaccines. Veterinary drug and vaccine from A to Z. 1st. Ed. Nobel Tıp Press. Istanbul, Turkey. Pp 56–156. 2018.
ZOETIS. Antisedan. 2014. Finland. Zoetis web. Online: https://bit.ly/3ZIID9t. 27/02/21.
Copyright (c) 2023 Rahmi Canbar, Muhittin Uslu, Mustafa Sedat Arslan, Harun Kızılay
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.