Phenotypic Detection of Metallo-beta-lactamase in Clinical Isolates of Pseudomonas aeruginosa

  • Armindo José Perozo Mena School of Bioanalysis, Faculty of Medicine, University of Zulia. Bacteriological Reference Center, Autonomous Service Maracaibo University Hospital.
  • Maribel Josefina Castellano González School of Bioanalysis, Faculty of Medicine, University of Zulia.
  • Eliana Ling Toledo Bacteriological Reference Center, Autonomous Service Maracaibo University Hospital.
  • Nailet Arraiz School of Bioanalysis, Faculty of Medicine, University of Zulia. Molecular Biology Laboratory, Dr. Feliz Gómez Endocrine Metabolic Research Center, Faculty of Medicine, Universidad del Zulia
Keywords: Pseudomonas aeruginosa, MBL, imipenem, meropenem

Abstract

Pseudomonas aeruginosa is considered one of the most important hospital germs; its isolation is common in hospitalized patients. In addition, this microorganism has a marked multiresistance, which increases mortality. Treatment of these patients is often difficult, since in addition to its natural resistance, Pseudomonas can obtain resistance mechanisms to virtually all antimicrobial drugs available for its treatment; due to this, its appearance is increasingly frequent and necessitates the use of antibiotics such as carbapenems, which facilitates the acquisition of resistance mechanisms to these drugs. This study attempts to determine the production of metallobeta-B-lactamase (MBL) in clinical isolates of Pseudomonas aeruginosa, utilizing two phenotypic methods: the double disc method (MDD) and the modified Hodge test (MHT). 726 clinical isolates of P. aeruginosa were analyzed; 20.11% (146) of these were resistant to imipenem (IPM) and meropenem (MEM); 139 were positive for the MDD, while 144 were positive for the MHT. These two methods permitted confirming the presence of an MBL-type carbapenemase in 98.63% of P. aeruginosa isolates; five isolates were negative for the MDD but positive for the MHT, indicating the presence of non-MBL-type carbapenemase in these isolates. Also, 2 isolates were obtained that, despite being resistant to IPM and MEM, were negative according to the two phenotypic methods used; this would indicate the presence of a non-enzymatic resistance mechanism conferring resistance to carbapenems. The use of phenotypic methods for detecting MBL in P. aeruginosa isolates is quite an acceptable option for use in routine laboratories where specialized molecular biology tests are not available.

References

(1) Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y. Epidemiology and Clinical Outcomes of Patients with Multiresistant Pseudomonas aeruginosa. Clinical Infectious Diseases 1999 May 1; 28(5):1128-33.

(2) Pagniez G, Radice M. Prevalencia de metalo-B-lactamasas en Pseudomonas aeruginosa resistentes a carbapenemes en un Hospital Universitario de Buenos Aires. Revista Argentina de Microbiología 2006; 38(33):37.

(3) Sociedad Argentina de Bacteriología (SADEBAC). Consenso sobre criterio de ensayo, interpretación e Informe de las pruebas de sensibilidad en los BGNNF de importancia clínica. www aam org ar 2005.

(4) Troillet N, Samore MH, Carmeli Y. Imipenem-Resistant Pseudomonas aeruginosa:

Risk Factors and Antibiotic Susceptibility Patterns. Clinical Infectious Diseases 1997 Nov 1; 25(5):1094-8.

(5) Sader HS, Jones RN, Gales AC, Silva JB, Pignatari AC. SENTRY antimicrobial surveillance program report: Latin American and brazilian results for 1997 through 2001. Brazilian Journal of Infectious Diseases 2004; 8:25-79.

(6) Programa Venezolano de Vigilancia de la Resistencia Bacteriana a los Antimicrobianos. Etiología y Resistencia Bacteriana en Venezuela. 28-5-2011. Caracas, Venezuela. 28-5-2011.

(7) Pineda M, Bonilla X, Perozo-Mena A. Boletín Sobre Etiología y Resistencia Bacteriana. 2008. Centro de Referencia Bacteriológica SAHUM.

(8) The inhibitors of cell wall synthesis. In: Scholar E, Pratt W, editors. The Antimicrobial Drugs. Second Edition ed. New York: Oxford University Press; 2000. p 51-80.

(9) Suarez CJ, Kattan JN, Guzmán AM, Villegas MV. Mecanismos de resistencia a carbapenems en P. aeruginosa, Acinetobacter y Enterobacteriaceae y estrategias para suprevención y control. Infectio 2006; 10:85-93.

(10) Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR Typing of Genetic Determinants for Metallo-B-Lactamases and Integrases Carried by Gram-

Negative Bacteria Isolated in Japan, with Focus on the Class 3 Integron. J Clin Microbiol 2003 Dec 1; 41(12):5407-13.

(11) Toleman MA, Biedenbach D, Bennett D, Jones RN, Walsh TR. Genetic characterization of a novel metallo-B-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. J Antimicrob Chemother 2003 Oct 1; 52(4):583-90.

(12) Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991 Jan 1; 35(1):147-51.

(13) Yano H, Kuga A, Okamoto R, Kitasato H, Kobayashi T, Inoue M. Plasmid-Encoded

Metallo--Lactamase (IMP-6) Conferring Resistance to Carbapenems, Especially Meropenem. Antimicrob Agents Chemother 2001 May 1; 45(5):1343-8.

(14) Henry D, Speert D. Pseudomonas. In: Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D, editors. Manual of Clinical Microbiology. 10th Edition ed. Washington DC: ASM Press; 2011. p. 677-91.

(15) Kiska D, Gillighan P. Pseudomonas. In: Murray P, Baron E, Jorgensen J, Landry M, Pfaller M, editors. Manual of Clinical Microbiology. 9th ed. Washington DC: ASM Press; 2007. p. 734-48.

(16) Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966 Apr; 45(4):493-6.

(17) Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Second Informational Supplement. M100-S22[32]. 2012. Clinical and Laboratory Standards Institute.

(18) Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient Test for Screening Metallo-B-Lactamase-Producing Gram-Negative Bacteria by Using Thiol Compounds. J Clin Microbiol 2000 Jan 1; 38(1):40-3.

(19) Hodge W, Ciak J, Tramont EC. Simple method for detection of penicillinase producing Neisseria gonorrhoeae. J Clin Microbiol 1978 Jan; 7(1):102-3.

(20) Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge Test and the

Imipenem-EDTA Double-Disk Synergy Test for Differentiating Metallo-B-Lactamase-Producing Isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003 Oct 1; 41(10):4623-9.

(21) Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa Producing VIM-8, a Novel Metallo-B-Lactamase, in a Tertiary Care Center in Cali, Colombia. J Clin Microbiol 2004 Nov 1; 42(11):5094-101.

(22) Castanheira M, Bell JM, Turnidge JD, Mathai D, Jones RN. Carbapenem Resistance among Pseudomonas aeruginosa Strains from India: Evidence for Nationwide Endemicity of Multiple Metallo-B-Lactamase Clones (VIM-2, -5, -6, and -11 and the Newly Characterized VIM-18). Antimicrob Agents Chemother 2009 Mar; 53(3):1225-7.

(23) Yan JJ, Hsueh PR, Ko WC, Luh KT, Tsai SH, Wu HM, et al. Metallo--Lactamases in Clinical Pseudomonas Isolates in Taiwan and Identification of VIM-3, a Novel Variant of the VIM-2 Enzyme. Antimicrob Agents Chemother 2001 Aug 1; 45(8):2224-8.

(24) Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo--lactamase production in Enterobacteriaceae. J Antimicrob Chemother 2008 Mar 1; 61(3):548-53.

(25) Guevara A, Gamboa A, Machado M, Vera M. Evaluación del ácido etilendiaminotetraacético y del mercaptoacético de sodio en la detección de metalo -lactamasas en Pseudomonas aeruginosa mediante la técnica del disco combinado. Revista de la Sociedad Venezolana de Microbiología 2010;30(1):11-7.

(26) Lee K, Chong Y, Shin H, Kim Y, Yong D,Yum J. Modified Hodge and EDTA-disk synergy tests to screen metallo--lactamase--producing strains of Pseudomonas and Acinetobacter species. Clinical Microbiology & Infection 2001; 7(2):88-91.

(27) Li XZ, Nikaido H, Poole K. Role of mexAmexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995 Sep 1; 39(9):1948-53.

(28) Cabot G, Ocampo-Sosa AA, Tubau F, Macia MaD, Rodríguez C, Moya B, et al. Overexpression of AmpC and Efflux Pumps in Pseudomonas aeruginosa Isolates from Bloodstream Infections: Prevalence and Impact on Resistance in a Spanish Multicenter Study. Antimicrob Agents Chemother 2011 May 1; 55(5):1906-11.

(29) Pitout JDD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa Producing Metallo-B-Lactamases in a Large Centralized Laboratory. J Clin Microbiol 2005 Jul 1; 43(7): 3129-35.

(30) Buscher KH, Cullmann W, Dick W, Opferkuch W. Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein. Antimicrob Agents Chemother 1987 May; 31(5):703-8.

(31) Valenza G, Joseph B, Elias J, Claus H, Oesterlein A, Engelhardt K, et al. First Survey of Metallo-B-Lactamases in Clinical Isolates of Pseudomonas aeruginosa in a German University Hospital. Antimicrob Agents Chemother 2010 Aug 1; 54(8):3493-7.

Published
2012-07-01
How to Cite
1.
Perozo Mena AJ, Castellano González MJ, Ling Toledo E, Arraiz N. Phenotypic Detection of Metallo-beta-lactamase in Clinical Isolates of Pseudomonas aeruginosa. Kasmera [Internet]. 2012Jul.1 [cited 2024Dec.23];40(2):113-21. Available from: https://produccioncientificaluz.org/index.php/kasmera/article/view/4936
Section
Original Articles