Medio de cultivo convencional enriquecido con extractos de quinoa, amaranto y chía promueve el crecimiento de Staphylococcus aureus.

  • Elizabeth Proaño-Pérez Facultad de Ciencias de la Salud. Universidad Técnica de Ambato, Ecuador
  • Israel Manjarres-Raza Facultad de Ciencias e Ingeniería en Alimentos.Universidad Técnica de Ambato, Ecuador.
  • Cristian Carvajal-Tapia Facultad de Ciencias e Ingeniería en Alimentos.Universidad Técnica de Ambato, Ecuador.
  • Wilber Romero-Fernandez Facultad de Ciencias de la Salud. Universidad Técnica de Ambato, Ecuador.
Palabras clave: Chenopodium quinoa, Amaranthus, Salvia hispanica, Staphylococcus aureus, crecimiento bacteriano.

Resumen

La identificación bacteriana durante las infecciones microbiológicas es un aspecto crítico a la hora de escoger un tratamiento específico para evitar complicaciones del paciente o en algunos casos su muerte. Por ello, incrementar el crecimiento celular durante el diagnóstico clínico por cultivo bacteriano puede reducir el tiempo para determinar el patógeno que causa la enfermedad. En este trabajo, se utilizó el cultivo bacteriano como metodología y se evaluó el crecimiento de Staphylococcus aureus en un medio de cultivo convencional enriquecido con extractos de Chenopodium quinoa, Amaranthus caudatus y Salvia hispanica. Los resultados obtenidos muestran que estos extractos, a bajas concentraciones, tienen un efecto protector contra la citotoxicidad que se podría generar por el estrés oxidativo producto del metabolismo celular de las bacterias cultivadas in vitro e incrementan significativamente el crecimiento bacteriano. La adicción de estos extractos a los medios convencionales podría mejorar el crecimiento bacteriano durante un diagnóstico bacteriológico y reducir el tiempo de identificación del patógeno.

Citas

(1) Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections. BMC Infect Dis. 2014;14:593.

(2) Millar BC, Xu J, Moore JE. Molecular diagnostics of medically important bacterial infections. Curr Issues Mol Biol. 2007;9(1):21-39.

(3) Nolte FS. Molecular diagnostics for detection of bacterial and viral pathogens in community-acquired pneumonia. Clin Infect Dis. 2008;47 Suppl 3:S123-126.

(4) Liesenfeld O, Lehman L, Hunfeld KP, Kost G. Molecular diagnosis of sepsis: New aspects and recent developments. Eur J Microbiol Immunol (Bp). 2014;4(1):1-25.

(5) Houpikian P, Raoult D. Traditional and molecular techniques for the study of emerging bacterial diseases: one laboratory’s perspective. Emerg Infect Dis. 2002;8(2):122-131.

(6) Nascimento AC, Mota C, Coelho I, Gueifao S, Santos M, Matos AS, et al. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem. 2014;148:420-426.

(7) Tang Y, Li X, Chen PX, Zhang B, Hernandez M, Zhang H, et al. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015;174:502-508.

(8) Ullah R, Nadeem M, Imran M. Omega-3 fatty acids and oxidative stability of ice cream supplemented with olein fraction of chia (Salvia hispanica L.) oil. Lipids Health Dis. 2017;16(1):34.

(9) Nowak V, Du J, Charrondiere UR. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016;193:47-54.

(10) Valdivia-Lopez MA, Tecante A. Chia (Salvia hispanica): A Review of Native Mexican Seed and its Nutritional and Functional Properties. Adv Food Nutr Res. 2015;75:53-75.

(11) Rastogi A, Shukla S. Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr. 2013;53(2):109-125.

(12) Yao Y, Yang X, Shi Z, Ren G. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J Food Sci. 2014;79(5):H1018-1023.

(13) Yao Y, Shi Z, Ren G. Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.). Int J Mol Sci. 2014;15(10):19307-19318.

(14) Tang Y, Li X, Zhang B, Chen PX, Liu R, Tsao R. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015;166:380-388.

(15) Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I. Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem. 2014;163:178-185.

(16) Dallagnol AM, Pescuma M, Rollan G, Torino MI, de Valdez GF. Optimization of lactic ferment with quinoa flour as bio-preservative alternative for packed bread. Appl Microbiol Biotechnol. 2015;99(9):3839-3849.

(17) Lamothe LM, Srichuwong S, Reuhs BL, Hamaker BR. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem. 2015;167:490-496.

(18) Adewale A, Olorunju AE. Modulatory of effect of fresh Amaranthus caudatus and Amaranthus hybridus aqueous leaf extracts on detoxify enzymes and micronuclei formation after exposure to sodium arsenite. Pharmacognosy Res. 2013;5(4):300-305.

(19) Marineli Rda S, Moura CS, Moraes EA, Lenquiste SA, Lollo PC, Morato PN et al.. Chia (Salvia hispanica L.) enhances HSP, PGC-1alpha expressions and improves glucose tolerance in diet-induced obese rats. Nutrition. 2015;31(5):740-748.

(20) Pagno CH, Costa TM, de Menezes EW, Benvenutti EV, Hertz PF, Matte CR, et al. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chem. 2015;173:755-762.

(21) Gawlik-Dziki U, Swieca M, Sulkowski M, Dziki D, Baraniak B, Czyz J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts - in vitro study. Food Chem Toxicol. 2013;57:154-160.

(22) Peeling RW, Smith PG, Bossuyt PM. A guide for diagnostic evaluations. Nat Rev Microbiol. 2008;6(11 Suppl):S2-6.

(23) Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(21):2063.

(24) Davey PG, Marwick C. Appropriate vs. inappropriate antimicrobial therapy. Clin Microbiol Infect. 2008;14 Suppl 3:15-21.

(25) Lueangarun S, Leelarasamee A. Impact of inappropriate empiric antimicrobial therapy on mortality of septic patients with bacteremia: a retrospective study. Interdiscip Perspect Infect Dis. 2012;2012:765205.

(26) Canton R, Horcajada JP, Oliver A, Garbajosa PR, Vila J. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance. Enferm Infecc Microbiol Clin. 2013;31 Suppl 4:3-11.

(27) Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5(6):229-241.

(28) Barenfanger J, Graham DR, Kolluri L, Sangwan G, Lawhorn J, Drake CA, et al. Decreased mortality associated with prompt Gram staining of blood cultures. Am J Clin Pathol. 2008;130(6):870-876.

(29) Kirn TJ, Weinstein MP. Update on blood cultures: how to obtain, process, report, and interpret. Clin Microbiol Infect. 2013;19(6):513-520.

(30) Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG, Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603-661.

(31) Miranda MD-H, J.; Vega-Gálvez,A.; Jorquera, E.; Quispe-Fuentes, Q and Martínez, M. . Antimicrobial Potential and Phytochemical Content of Six Diverse Sources of Quinoa Seeds (Chenopodium quinoa Willd.). Agricultural Sciences. 2014;5:1015-1024.

(32) Spite M, Norling LV, Summers L, Yang R, Cooper D, Petasis NA. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461(7268):1287-1291.

(33) Svahn SL, Ulleryd MA, Grahnemo L, Stahlman M, Boren J, Nilsson S, Jansson JO, Johansson ME. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis. Infect Immun. 2016;84(4):1205-1213.

(34) Broekaert WF, Marien W, Terras FR, De Bolle MF, Proost P, Van Damme J, et al. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry. 1992;31(17):4308-4314.

(35) Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, et al. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev. 2013;37(6):955-989.

(36) Tuladhar E, Terpstra P, Koopmans M, Duizer E. Virucidal efficacy of hydrogen peroxide vapour disinfection. J Hosp Infect. 2012;80(2):110-115.

(37) Bors W, Michel C. Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci. 2002;957:57-69.

(38) Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148-157.

(39) Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295(4):C849-868.

(40) Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxid Med Cell Longev. 2016;2016:5692852.

Publicado
2017-08-07
Cómo citar
1.
Proaño-Pérez E, Manjarres-Raza I, Carvajal-Tapia C, Romero-Fernandez W. Medio de cultivo convencional enriquecido con extractos de quinoa, amaranto y chía promueve el crecimiento de Staphylococcus aureus. Kasmera [Internet]. 7 de agosto de 2017 [citado 20 de abril de 2024];45(1):8-15. Disponible en: https://produccioncientificaluz.org/index.php/kasmera/article/view/22831
Sección
Artículos Originales