Cepas de Escherichia coli productoras de BetaLactamasas de Espectro Extendido en heces de caninos
Resumen
Las betalactamasas de espectro extendido (BLEE) son enzimas bacterianas que confieren resistencia a antibióticos betalactámicos, como penicilinas y cefalosporinas de diversas generaciones, a excepción de cefamicinas y carbapenémicos. Estas enzimas pueden ser inhibidas por el ácido clavulánico. Aunque inicialmente se asociaron con Klebsiella pneumoniae, actualmente Escherichia coli es uno de los principales productores de BLEE en ambientes hospitalarios y comunitarios. Las cepas de E. coli productoras de BLEE están clasificadas como patógenos prioritarios por la Organización Mundial de la Salud (OMS) debido a su capacidad de desarrollar resistencia a múltiples antibióticos (MDR). Este fenómeno se debe a la transmisión de genes mediante plásmidos, lo que facilita su diseminación entre humanos y animales. El contacto estrecho entre humanos y perros domésticos es un posible factor de riesgo para la diseminación de estas cepas multirresistentes. A nivel mundial, se estima que alrededor del 6,9 % de los perros son portadores de E. coli productora de BLEE, mientras que en Ecuador, algunos estudios han reportado presencia de E. coli productora de BLEE hasta un 40 % en muestras fecales de caninos. Este estudio se centró en evaluar la prevalencia de cepas de E. coli productoras de BLEE en 114 perros atendidos en la Clínica Veterinaria de la Universidad de Machala. Las muestras se tomaron mediante hisopados rectales y fueron cultivadas en agar cromogénico, lo que permitió identificar 39 cepas de E. coli productoras de BLEE, representando un 34,2 % del total. Las cepas mostraron alta resistencia a monobactámicos, cefalosporinas y tetraciclinas, aunque todas fueron sensibles a carbapenémicos como imipenem y meropenem. Estos hallazgos destacan la necesidad de una mayor vigilancia de la resistencia antimicrobiana en animales domésticos, ya que el uso indiscriminado de antibióticos en medicina veterinaria podría estar contribuyendo a la selección de cepas resistentes, con implicaciones importantes para la salud pública.
Descargas
Citas
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. [Internet]. 2012; 18(5):263-272. doi: https://doi.org/f3zhjc
Pitout JDD. Infections with Extended-Spectrum β-Lactamase-producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs [Internet]. 2010; 70(3):313-333. doi: https://doi.org/b8tt5h
McDanel J, Schweizer M, Crabb V, Nelson R, Samore M, Khader K, Blevins AE, Diekema D, Chiang HY, Nair R, Perencevich E. Incidence of Extended-Spectrum β-Lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: A systematic literature review. Infect. Control Hosp. Epidemiol. [Internet]. 2017; 38(10):1209-1215. doi: https://doi.org/gffcps
World Health Organization. WHO integrated global surveillance on ESBL-producing E. coli using a “One Health” approach: implementation and opportunities. Geneva (Swiss): World Health Organization; 2021 [consultado 12 Jul. 2024]. 76 p Disponible en: https://goo.su/d1fBnzp
Castanheira M, Simner PJ, Bradford PA. Extended-Spectrum β-Lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. [Internet]. 2021; 3(3):dlab092. doi: https://doi.org/gqgtqv
Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of Extended-Spectrum β-Lactamases in the community: Toward the globalization of CTX-M. Clin. Microbiol. Rev. [Internet]. 2013; 26(4):744-758. doi: https://doi.org/f5fnnj
Cantón R, Coque TM. The CTX-M β-Lactamase pandemic. Curr. Opin. Microbiol. [Internet]. 2006; 9(5):466-475. doi: https://doi.org/fbhf5k
Borck-Høg B, Korsgaard HB, Wolff-Sönksen U, Bager F, Bortolaia V, Ellis-Iversen J, Hendriksen RS, Jensen LB, Pedersen K, Dalby T, Træholt – Franck K, Hammerum AM, Hasman H, Hoffmann S, Gaardbo-Kuhn K, Rhod-Larsen A, Larsen J, Vorobieva V, et al. DANMAP 2016 – Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark [Internet]. Copenhagen (Denmark): Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute; 2017 [consultado 20 Jul 2024]. 133 p. Disponible en: https://goo.su/iB6szk
Bengtsson B, Franklin A, Greko C, Grönlund-Andersson U. SVARM 2006, Swedish Veterinary Antimicrobial Resistance Monitoring. Bengtsson B, Greko C, Grönlund-Andersson U, editors. Uppsala (Sweden): National Veterinary Institute (SVA); 2007. 46 p.
Organización Mundial de la Salud. La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos [Internet]. Ginebra: Organización Mundial de la Salud; 2017 [consultado 20 Jul. 2024]. Disponible en: https://goo.su/gLV3PPo
Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K, Torre-Edo J, Torres C, Threlfall J. Public health risks of enterobacterial isolates producing Extended-Spectrum β-Lactamases or AmpC β-lactamases in food and food-producing animals: An EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. [Internet]. 2013; 56(7):1030-1037. doi: https://doi.org/f4spz9
Ewers C, Bethe A, Semmler T, Guenther S, Wieler LH. Extended-Spectrum β-Lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. [Internet]. 2012; 18(7):646-655. doi: https://doi.org/f32zvm
Wu G, Day MJ, Mafura MT, Nunez-Garcia J, Fenner JJ, Sharma M, Van Essen-Zandbergen A, Rodríguez I, Dierikx C, Kadlec K, Schink AK, Chattaway M, Waine J, Helmuth R, Guerra B, Schwarz S, Threlfall J, Woodward MJ, Woodford N, Coldham N, Mevius D. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One [Internet]. 2013; 8(9): e75392. doi: https://doi.org/g8vn3k
Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH, Guenther S. Emergence of human pandemic O25:H4-ST131CTX-M-15 Extended-Spectrum-β-Lactamase-producing Escherichia coli among companion animals. J. Antimicrob. Chemother. [Internet]. 2010; 65(4):651-660. doi: https://doi.org/dv3wn8
Hong JS, Song W, Park HM, Oh JY, Chae JC, Shin S, Jeong SH. Clonal spread of Extended-Spectrum cephalosporin-resistant Enterobacteriaceae between companion animals and humans in South Korea. Front. Microbiol. [Internet]. 2019; 10:1371. doi: https://doi.org/g8vn3m
So JH, Kim J, Bae IK, Jeong SH, Kim SH, Lim SK, Park YH, Lee K. Dissemination of multidrug-resistant Escherichia coli in Korean veterinary hospitals. Diagn. Microbiol. Infect. Dis. [Internet]. 2012; 73(2):195-199. doi: https://doi.org/f3zgb4
Blouin DD. All in the family? Understanding the meaning of dogs and cats in the lives of American pet owners [dissertation on the Internet]. Bloomington (Indiana, EUA): Indiana University; 2008 [consultado 7 Jul. 2024]. 336 p. Disponible en: https://goo.su/vphJtrQ
Walther B, Hermes J, Cuny C, Wieler LH, Vincze S, Abou-Elnaga Y, Stamm I, Kopp PA, Kohn B, Witte W, Jansen A, Conraths FJ, Semmler T, Eckmanns T, Lübke-Becker A. Sharing more than friendship-Nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS One [Internet]. 2012; 7(4):e35197. doi: https://doi.org/g8vn3n
Meyer E, Gastmeier P, Kola A, Schwab F. Pet animals and foreign travel are risk factors for colonisation with Extended-Spectrum β-Lactamase-producing Escherichia coli. Infection [Internet]. 2012; 40(6):685-687. doi: https://doi.org/f4fj97
Li XZ, Mehrotra M, Ghimire S, Adewoye L. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet. Microbiol. [Internet]. 2007; 121(3-4):197-214. doi: https://doi.org/cm2dgz
Salgado-Caxito M, Benavides JA, Adell AD, Paes AC, Moreno-Switt AI. Global prevalence and molecular characterization of Extended-Spectrum β-Lactamase producing-Escherichia coli in dogs and cats-A scoping review and meta-analysis. One Health [Internet]. 2021; 12:100236. doi: https://doi.org/gp9gck
Ortega-Paredes D, Haro M, Leoro-Garzón P, Barba P, Loaiza K, Mora F, Fors M, Vinueza-Burgos C, Fernández-Moreira E. Multidrug-resistant Escherichia coli isolated from canine faeces in a public park in Quito, Ecuador. J. Glob. Antimicrob. Resist. [Internet]. 2019;18:263-268. doi: https://doi.org/gqwgg6
Mitman SL, Amato HK, Saraiva-Garcia C, Loayza F, Salinas L, Kurowski K, Marusinec R, Paredes D, Cárdenas P, Trueba G, Graham JP. Risk factors for third-generation cephalosporin-resistant and Extended-Spectrum β-Lactamase-producing Escherichia coli carriage in domestic animals of semirural parishes east of Quito, Ecuador. PLOS Glob. Public Health [Internet]. 2022; 2(3):e0000206. doi: https://doi.org/g8vn3p
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 7th ed. Wayne (Pennsylvania, EUA): Clinical and Laboratory Standards Institute; 2024. 288 p. (CLSI supplement VET01S).
Ventura M, Oporto-Llerena R, Espinoza K, Guibert F, Quispe AM, Vilar N, López M, Rojo-Bezares B, Sáenz Y, Ruiz J, Pons MJ. Antimicrobial resistance and associated risk factors in Escherichia coli isolated from Peruvian dogs: A focus on Extended-Spectrum β-Lactamases and colistin. Vet. World [Internet]. 2024; 17(4):880-887. doi: https://doi.org/g8vn3q
Galarce N, Arriagada G, Sánchez F, Escobar B, Miranda M, Matus S, Vilches R, Varela C, Zelaya C, Peralta J, Paredes-Osses E, González-Rocha G, Lapierre L. Phenotypic and genotypic antimicrobial resistance in Escherichia coli strains isolated from household dogs in Chile. Front. Vet. Sci. [Internet]. 2023; 10:1233127. doi: https://doi.org/g8vn3r
Yousfi M, Mairi A, Touati A, Hassissene L, Brasme L, Guillard T, De Champs C. Extended spectrum β-lactamase and plasmid mediated quinolone resistance in Escherichia coli fecal isolates from healthy companion animals in Algeria. J. Infect. Chemother. [Internet]. 2016; 22 (7):431-435. doi: https://doi.org/g8vn3s
Marchetti L, Buldain D, Gortari-Castillo L, Buchamer A, Chirino-Trejo M, Mestorino N. Pet and stray dogs as reservoirs of antimicrobial-resistant Escherichia coli. Int. J. Microbiol. [Internet]. 2021; 6664557. doi: https://doi.org/gqwghw
Koo HJ, Woo GJ. Distribution and transferability of tetracycline resistance determinants in Escherichia coli isolated from meat and meat products. Int. J. Food Microbiol. [Internet]. 2011; 145(2-3):407-413. doi: https://doi.org/dfsv5x
Sinha E, Panwar K, Yadav P, Puvvala B, Bishnoi S, Patel KJ. Exploring antibiotic resistance profiles in Escherichia coli strains isolated from canine wound infections: A comprehensive antibiogram analysis. Int. J. Adv. Biochem. Res. [Internet]. 2024; 8(1S):573-575. doi: https://doi.org/g8vn3t
Mustapha M, Audu Y, Ezema KU, Abdulkadir JU, Lawal JR, Balami AG, Adamu L, Bukar-Kolo YM. Antimicrobial susceptibility profiles of Escherichia coli isolates from diarrheic dogs in Maiduguri, Borno State, Nigeria. Maced. Vet. Rev. [Internet]. 2021; 44(1):47-53. doi: https://doi.org/g8vn3v
Penna B, Varges R, Medeiros L, Martins GM, Martins RR, Lilenbaum W. Species distribution and antimicrobial susceptibility of staphylococci isolated from canine otitis externa. Vet. Dermatol. [Internet]. 2010; 21(3):292-296. doi: https://doi.org/d39w6j
Organización Mundial de Sanidad Animal. Lista de agentes antimicrobianos importantes para la medicina veterinaria [Internet]. Paris: OIE, 2019 [consultado 3 Oct. 2024]. Disponible en: https://goo.su/Wztxr
World Health Organization. Critically important antimicrobials for human medicine. 6th rev 2018. [Internet]. Ginebra (Suiza): WHO; 2019. 52 p. [Consultado 3 Oct. 2024]. Disponible en: https://goo.su/GBkLdj3
Schindler BD, Buensalido JAL, Kaatz GW. Fluoroquinolone resistance in bacteria. In: Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D, editors. Antimicrobial Drug Resistance. 2nd ed. Berlin (Alemania): Springer; 2017. p. 245-263.
Meirelles-Pereira FM, Pereira AMS, da Silva MCG, Gonçalves VD, Brum PR, de Castro EAR, Pereira AA, Esteves FA, Pereira JA. Ecological aspects of the antimicrobial resistance in bacteria of importance to human infections. Braz. J. Microbiol. [Internet]. 2002; 33:287-293. doi: https://doi.org/dkb5bv
Thepmanee J, Rodroo J, Awaiwanont N, Intanon M, Na-Lampang K, Thitaram N, Thongkorn K. Investigation of Extended-Spectrum Beta-Lactamase (ESBL)-producing Escherichia coli and antimicrobial resistance in dogs with periodontal disease. Thai. J. Vet. Med. [Internet]. 2019; 49(3):227-233. doi: https://doi.org/g8vn3w
Sfaciotte RAP, Parussolo L, Melo FD, Wildemann P, Bordignon G, Israel ND, Leitzke M, Wosiacki SR, Salbego FZ, Da Costa UM, Ferraz SM. Identification and characterization of multidrug-resistant Extended-Spectrum Beta-Lactamase-producing bacteria from healthy and diseased dogs and cats admitted to a veterinary hospital in Brazil. Microb. Drug. Resist. [Internet]. 2021; 27(6):855-864. doi: https://doi.org/gqwgjj
Baede VO, Wagenaar JA, Broens EM, Duim B, Dohmen W, Nijsse R, Timmerman AJ, Hordijk J. Longitudinal study of Extended-Spectrum-β-Lactamase – and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob. Agents Chemother. [Internet]. 2015; 59(6):3117-3124. doi: https://doi.org/f7ksx3
Silva MM, Fernandes MR, Sellera FP, Cerdeira L, Medeiros LKG, Garino F, Azevedo SS, Lincopan N. Multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae ST231 associated with infection and persistent colonization of dog. Diagn. Microbiol. Infect. Dis. [Internet]. 2018; 92(3):259-261. doi: https://doi.org/g8vn3x
Derechos de autor 2024 Norma Alelia Rodríguez-Duran, Raquel Estefanía Sánchez-Prado, Jhonny Edgar Pérez-Rodríguez, Brandon Joao Lascano-Domínguez, Johon Armando Luna-Florin, Ana Elizabeth Guerrero-Lopez, Samantha Guzmán-Pucha, Robert Gustavo Sánchez-Prado
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.