La eritropoyetina y el Hypericum perforatum mejoran la nefrotoxicidad inducida por gentamicina en ratas
Resumen
La gentamicina (GM), que causa nefrotoxicidad, es un antibiótico aminoglucósido comúnmente indicado para tratar infecciones por gram negativos. La eritropoyetina (EPO), que tiene diferentes funciones biológicas entre las que se incluyen neuroprotección, cicatrización de heridas y nefroprotección, es una hormona glicoproteica que controla la eritropoyesis. Hypericum perforatum (HP) es una hierba medicinal con efectos antibacterianos y nefroprotectores. El objetivo de este estudio es demostrar la eficacia de EPO y HP en la nefrotoxicidad de transgénicos utilizando evaluaciones bioquímicas, histopatológicas e inmunohistoquímicas combinadas. Un total de 36 ratas macho Spraque–Dawley se dividieron como control, GM (100 mg·kg-1 día), GM+EPO, GM+HP, EPO (1000 UI·kg-1 tres días consecutivos de diferencia) y HP (200 mg·kg-1 día) (n=6) y el experimento duró 9 días. La EPO y HP redujeron el aumento del peso relativo de los riñones inducido por transgénicos; mientras que provocaron un incremento de los niveles séricos de nitrógeno ureico (BUN), creatinina y urea. Así mismo, EPO y HP redujeron el nivel de malondialdehído (MDA), que aumentó con la aplicación de transgénicos, y aumentaron las actividades del glutatión reducido (GSH), la glutatión peroxidasa (GSH–Px) y la catalasa (CAT). La nefrotoxicidad de los transgénicos resultó en degeneración tubular, vacuolización y depósitos hialinos, degeneración glomerular e infiltración de células mononucleares intersticiales. EPO y HP atenuaron estos cambios histopatológicos. Además, la EPO y el HP redujeron la inmunorreactividad de la caspasa–3, que aumentó con la aplicación de transgénicos. Se demostró que la EPO y la HP tienen efectos atenuantes sobre la lesión renal inducida por transgénicos y, especialmente, el intenso contenido de antioxidantes de la HP tiene un efecto regulador sobre las consecuencias negativas del estrés oxidativo.
Descargas
Citas
Ullah N, Azam Khan M, Khan T, Ahmad W. Protective potential of Tamarindus indica against gentamicin–induced nephrotoxicity. Pharm. Biol. [Internet]. 2014; 52(4):428–434. doi: https://doi.org/gt7gmb
Mahi–Birjand M, Yaghoubi S, Abdollahpour–Alitappeh M, Keshtkaran Z, Bagheri N, Pirouzi A, Khatami M, Sepehr KS, Peymani P, Karimzadeh I. Protective effects of pharmacological agents against aminoglycoside–induced nephrotoxicity: a systematic review. Expert. Opin. Drug Saf. [Internet]. 2020; 19(2):167–186. doi: https://doi.org/gt7gmc
Randjelović P, Veljković S, Stojiljković N, Sokolović D, Ilić I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI J. [Internet]. 2017; 16:388. doi: https://doi.org/gtnhhg
Sharfuddin AA, Weisbord SD, Palevsky PM, Molitoris BA. Acute kidney injury. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM. Brenner & Rector’s The Kidney. 9th ed. Vol. 1. Philadelphia (Pennsylvania, USA): Saunders Elsevier. 2012. p. 1044–1099.
Lopez–Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez–Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. [Internet]. 2011; 79(1):33–45. doi: https://doi.org/fdg4cj
Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi AP, Masini E, Salvemini D. A role for superoxide in gentamicin‐mediated nephropathy in rats. Eur. J. Pharmacol. [Internet]. 2002; 450(1):67–76. doi: https://doi.org/dwb8mc
Codea AR, Mircean M, Nagy A, Sarpataky O, Sevastre B, Stan RL, Hangan AC, Popovici C, Neagu D, Purdoiu R, Biriș A, Ungur R, Liviu O. Melatonine and erythropoietin prevents gentamicin induced nephrotoxicity in rats. Farmacia [Internet]. 2019; 67(3):392–397. doi: https://doi.org/gt7gmd
Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci. [Internet]. 2014; 15(6):10296–10333. doi: https://doi.org/f588xf
Johnson DW, Forman C, Vesey DA. Novel renoprotective actions of erythropoietin: new uses for an old hormone (Review article). Nephrology [Internet]. 2006; 11(4):306–312. doi: https://doi.org/cd7z3b
Ahmadiasl N, Banaei S, Alihemmati A. Combination antioxidant efect of erythropoietin and melatonin on renal ischemia reperfusion injury in rats. Iran. J. Basic Med. Sci. [Internet]. 2013; 16(12):1209–1216. doi: https://doi.org/ndjp
Banaei S, Ahmadiasl N, Alihemmati A. Comparison of the protective effects of erythropoietin and melatonin on renal ischemia–reperfusion injury. Trauma Mon. [Internet]. 2016; 21(3):e23005. doi: https://doi.org/gt7gmf
Stoyanoff TR, Rodríguez JP, Todaro JS, Colavita JPM, Torres AM, Aguirre MV. Erythropoietin attenuates LPS–induced microvascular damage in a murine model of septic acute kidney injury. Biomed. Pharmacother. [Internet]. 2018; 107:1046–1055. doi: https://doi.org/gfcfpw
Shrivastava M, Dwivedi LK. Therapeutic potential of Hypericum perforatum: a review. Int. J. Pharm. Sci. Res. [Internet]. 2015; 6(12):4982–4988. doi: https://doi.org/ndjr
Keskin C. Antioxidant, anticancer and anticholinesterase activities of flower, fruit and seed extracts of Hypericum amblysepalum HOCHST. Asian Pac. J. Cancer Prev. [Internet]. 2015; 16(7):2763–2769. doi: https://doi.org/gt7gmg
Raso GM, Pacilio M, Di Carlo G, Esposito E, Pinto L, Meli R. In–vivo and in–vitro anti–inflammatory effect of Echinacea purpurea and Hypericum perforatum. J. Pharm. Pharmacol. [Internet]. 2002; 54(10):1379–1383. doi: https://doi.org/b8vd5p
Saddiqe Z, Naeem I, Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. [Internet]. 2010; 131(3):511–21. doi: https://doi.org/cq4b4b
Cakir M, Duzova H, Baysal I, Gül CC, Kuşcu G, Kutluk F, Çakin H, Şeker Ş, İlbeği E, Uslu S, Avci U, Demir S, Akinci C, Atli S. The effect of Hypericum perforatum on kidney ischemia/reperfusion damage. Ren. Fail. [Internet]. 2017; 39(1):385–391. doi: https://doi.org/gkcr83
Sologub V, Grytsyk A. The research of the hypericum extract’s pharmacological activity. Pharm. Innov. [Internet]. 2013 [cited 12 Feb. 2024]; 1(11):85–89. Available in: https://goo.su/ANeKt
Yaman I, Balikci E. Protective effects of Nigella sativa against gentamicin–induced nephrotoxicity in rats. Exp. Toxicol. Pathol. [Internet]. 2010; 62(2):183–190. doi: https://doi.org/ffvrpp
Rjiba–Touati K, Ayed–Boussema I, Bouaziz C, Belarbia A, Azzabi A, Achour A, Hassen W, Bacha H. Protective effect of erythropoietin against cisplatin–induced nephrotoxicity in rats: antigenotoxic and antiapoptotic effect. Drug Chem. Toxicol. [Internet]. 2012; 35(1):89–95. doi: https://doi.org/fd5ztv
Elhadidy ME, Salama AAA, El–Kassaby M, Omara EA. Protective effect of Hypericum perforatum on dexamethasone–induced diabetic depression in rats. J. Arab. Soc. Med. Res. [Internet]. 2019; 14(1):25–32. doi: https://doi.org/gt7gmj
Placer ZA, Cushman LL, Johnson BC. Protective effect of Hypericum perforatum on dexamethasone–induced diabetic depression in rats . Anal. Biochem. [Internet]. 1966; 16(2):359–364. doi: https://doi.org/b96rpj
Sedlak J, Lindsay RH. Estimation of total, protein–bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. [Internet]. 1968; 25(1):192–205. doi: https://doi.org/csbsfm
Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium–deficient rat liver. Biochem. Biophys. Res. Commun. [Internet]. 1976; 71(4):952–958. doi: https://doi.org/d3vv59
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. [Internet]. 1991; 196(2–3):143–151. doi: https://doi.org/fthsdb
Türk E, Guvenç M, Cellat M, Uyar A, Kuzu M, Ağgül AG, Kırbaş A. Zingerone protects liver and kidney tissues by preventing oxidative stress, inflammation, and apoptosis in methotrexate–treated rats. Drug Chem. Toxicol. [Internet]. 2022; 45(3):1054–1065. doi: https://doi.org/gt7gmk
Baykalir BG, Arslan AS, Mutlu SI, Ak TP, Seven I, Seven PT, Yaman M, Gul HF. The protective effect of chrysin against carbon tetrachloride–induced kidney and liver tissue damage in rats. Int. J. Vitam. Nutr. Res. [Internet]. 2020; 91(5–6):1–12. doi: https://doi.org/ndhk
Parlak Ak T, Yaman M, Bayrakdar A, Bulmus O. Expression of phoenixin–14 and nesfatin–1 in the hypothalamo–pituitary–gonadal axis in the phases of the estrous cycle. Neuropeptides [Internet]. 2023; 97:102299. doi: https://doi.org/gt7gmm
Vysakh A, Abhilash S, Jayesh K, Midhun SJ, Jyothis M, Latha MS. Protective effect of Rotula aquatica Lour against gentamicin induced oxidative stress and nephrotoxicity in Wistar rats. Biomed. Pharmacother. [Internet]. 2018; 106:1188–1194. doi: https://doi.org/gd6nqg
Jaikumkao K, Pongchaidecha A, Thongnak Lo, Wanchai K, Arjinajarn P, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Amelioration of renal inflammation, endoplasmic reticulum stress and apoptosis underlies the protective effect of low dosage of atorvastatin in gentamicin–induced nephrotoxicity. PLoS One [Internet]. 2016; 11(10):e0164528. doi: https://doi.org/f9rt92
Zaky HS, Abdel–Sattar SA, Allam A, Ahmed HI. Further insights into the impact of rebamipide on gentamicin–induced nephrotoxicity in rats: modulation of SIRT1 and β–catenin/cyclin D1 pathways. Drug Chem. Toxicol. [Internet]. 2022; 46(5):851–863. doi: https://doi.org/gt7gmn
Izol V, Aridoğan IA, Tansuğ Z, Doran F, Erdoğan KE, Kaplan HM, Şingirik E, Ertuğ P, Pazarci P. Hypericum perforatum extract attennuates gentamicin induced oxidative stress, apoptosis and oedema in kidney. Int. J. Pharmacol. [Internet]. 2019; 15(1):66–73. doi: https://doi.org/gt7gmp
El–Kashef DH, El–Kenawi AE, Suddek GM, Salem HA. Flavocoxid attenuates gentamicin–induced nephrotoxicity in rats. Naunyn–Schmiedeberg’s Arch. Pharmacol. [Internet]. 2015; 388(12):1305–1315. doi: https://doi.org/f72v7p
Antar SA, Al–Karmalawy AA, Mourad A, Mourad M, Elbadry M, Saber S, Khodir A. Protective effects of mirazid on gentamicin induced nephrotoxicity in rats through antioxidant, anti–inflammatory, JNK1/iNOS, and apoptotic pathways; novel mechanistic insights. Pharm. Sci. [Internet]. 2022; 28(4):525–540. doi: https://doi.org/gt5kjt
Adil M, Kandhare AD, Dalvi G, Ghosh P, Venkata S, Raygude KS, Bodhankar SL. Ameliorative effect of berberine against gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Ren. Fail. [Internet]. 2016; 38(6):996–1006. doi: https://doi.org/gmq9xj
Kandemir FM, Ozkaraca M, Yildirim BA, Hanedan B, Kirbas A, Kilic K, Aktas E, Benzer F. Rutin attenuates gentamicin–induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren. Fail. [Internet]. 2015; 37(3):518–525. doi: https://doi.org/gnp878
Thongchai P, Buranakarl C, Chaiyabutr N. Renal function and oxidative stress following gentamicin induced renal injury in rats treated with erythropoietin, iron and vitamin E. Thai J. Vet. Med. [Internet]. 2008; 38(2):19–27. doi: https://doi.org/gt7gmq
Akbaribazm M, Goodarzi N, Rahimi M, Naseri L, Khazae M. Anti–inflammatory, anti–oxidative and antiapoptotic effects of Heracleum persicum L. extract on rats with gentamicin – induced nephrotoxicity. Asian Pac. J. Trop. Biomed. [Internet]. 2021; 11(2):47–58. doi: https://doi.org/gt7gmr
Mohamed HZE, Shenouda MBK. Amelioration of renal cortex histological alterations by aqueous garlic extract in gentamicin induced renal toxicity in albino rats: a histological and immunohistochemical study. Alexandria J. Med. [Internet]. 2021; 57(1):28–37. doi: https://doi.org/gt7gms
Kandeil MAM, Hassanin KMA, Mohammed ET, Safwat GM, Mohamed DS. Wheat germ and vitamin E decrease BAX/BCL–2 ratio in rat kidney treated with gentamicin. Beni–Suef Univ. J. Basic Appl. Sci. [Internet]. 2018; 7(3):257–262. doi: https://doi.org/gt7gmt
Zhang J, Zhao D, Na N, Li H, Miao B, Hong L, Huang Z. Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF–κβ pathway in ischemia/reperfusion injury after renal transplantation. Int. J. Mol. Med. [Internet]. 2018; 41(1):25–32. doi: https://doi.org/gt7gmv
Caglar HG, Selek S, Koktasoglu F, Koyuncu I, Demirel M, Sarikaya A, Meydan S. Effect of Camellia sinensis, Hypericum perforatum and Urtica dioica on kidney and liver injury induced by carbon tetrachloride in rats. Cell Mol. Biol. [Internet]. 2019; 65(5):79–86. doi: https://doi.org/gt7gmw
Derechos de autor 2024 Tuba Parlak Ak, Meltem Sağıroğlu, Gizem Elif Korkmaz, Mine Yaman
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.