La eritropoyetina y el Hypericum perforatum mejoran la nefrotoxicidad inducida por gentamicina en ratas

  • Tuba Parlak Ak University of Munzur, Faculty of Health Sciences, Department of Nutrition and Dietetics. Tunceli, Türkiye
  • Meltem Sağıroğlu University of Firat, Faculty of Veterinary Medicine, Department of Physiology. Elazig, Türkiye
  • Gizem Elif Korkmaz University of Munzur, Pertek Sakine Genc Vocational School, Department of Veterinary. Tunceli, Türkiye
  • Mine Yaman University of Firat, Faculty of Veterinary Medicine, Department of Histology and Embryology. Elazig, Türkiye
Palabras clave: Apoptosis, eritropoyetina, gentamicina, Hypericum perforatum, estrés oxidativo

Resumen

La gentamicina (GM), que causa nefrotoxicidad, es un antibiótico aminoglucósido comúnmente indicado para tratar infecciones por gram negativos. La eritropoyetina (EPO), que tiene diferentes funciones biológicas entre las que se incluyen neuroprotección, cicatrización de heridas y nefroprotección, es una hormona glicoproteica que controla la eritropoyesis. Hypericum perforatum (HP) es una hierba medicinal con efectos antibacterianos y nefroprotectores. El objetivo de este estudio es demostrar la eficacia de EPO y HP en la nefrotoxicidad de transgénicos utilizando evaluaciones bioquímicas, histopatológicas e inmunohistoquímicas combinadas. Un total de 36 ratas macho Spraque–Dawley se dividieron como control, GM (100 mg·kg-1 día), GM+EPO, GM+HP, EPO (1000 UI·kg-1 tres días consecutivos de diferencia) y HP (200 mg·kg-1 día) (n=6) y el experimento duró 9 días. La EPO y HP redujeron el aumento del peso relativo de los riñones inducido por transgénicos; mientras que provocaron un incremento de los niveles séricos de nitrógeno ureico (BUN), creatinina y urea. Así mismo, EPO y HP redujeron el nivel de malondialdehído (MDA), que aumentó con la aplicación de transgénicos, y aumentaron las actividades del glutatión reducido (GSH), la glutatión peroxidasa (GSH–Px) y la catalasa (CAT). La nefrotoxicidad de los transgénicos resultó en degeneración tubular, vacuolización y depósitos hialinos, degeneración glomerular e infiltración de células mononucleares intersticiales. EPO y HP atenuaron estos cambios histopatológicos. Además, la EPO y el HP redujeron la inmunorreactividad de la caspasa–3, que aumentó con la aplicación de transgénicos. Se demostró que la EPO y la HP tienen efectos atenuantes sobre la lesión renal inducida por transgénicos y, especialmente, el intenso contenido de antioxidantes de la HP tiene un efecto regulador sobre las consecuencias negativas del estrés oxidativo.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ullah N, Azam Khan M, Khan T, Ahmad W. Protective potential of Tamarindus indica against gentamicin–induced nephrotoxicity. Pharm. Biol. [Internet]. 2014; 52(4):428–434. doi: https://doi.org/gt7gmb

Mahi–Birjand M, Yaghoubi S, Abdollahpour–Alitappeh M, Keshtkaran Z, Bagheri N, Pirouzi A, Khatami M, Sepehr KS, Peymani P, Karimzadeh I. Protective effects of pharmacological agents against aminoglycoside–induced nephrotoxicity: a systematic review. Expert. Opin. Drug Saf. [Internet]. 2020; 19(2):167–186. doi: https://doi.org/gt7gmc

Randjelović P, Veljković S, Stojiljković N, Sokolović D, Ilić I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI J. [Internet]. 2017; 16:388. doi: https://doi.org/gtnhhg

Sharfuddin AA, Weisbord SD, Palevsky PM, Molitoris BA. Acute kidney injury. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM. Brenner & Rector’s The Kidney. 9th ed. Vol. 1. Philadelphia (Pennsylvania, USA): Saunders Elsevier. 2012. p. 1044–1099.

Lopez–Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez–Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. [Internet]. 2011; 79(1):33–45. doi: https://doi.org/fdg4cj

Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi AP, Masini E, Salvemini D. A role for superoxide in gentamicin‐mediated nephropathy in rats. Eur. J. Pharmacol. [Internet]. 2002; 450(1):67–76. doi: https://doi.org/dwb8mc

Codea AR, Mircean M, Nagy A, Sarpataky O, Sevastre B, Stan RL, Hangan AC, Popovici C, Neagu D, Purdoiu R, Biriș A, Ungur R, Liviu O. Melatonine and erythropoietin prevents gentamicin induced nephrotoxicity in rats. Farmacia [Internet]. 2019; 67(3):392–397. doi: https://doi.org/gt7gmd

Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci. [Internet]. 2014; 15(6):10296–10333. doi: https://doi.org/f588xf

Johnson DW, Forman C, Vesey DA. Novel renoprotective actions of erythropoietin: new uses for an old hormone (Review article). Nephrology [Internet]. 2006; 11(4):306–312. doi: https://doi.org/cd7z3b

Ahmadiasl N, Banaei S, Alihemmati A. Combination antioxidant efect of erythropoietin and melatonin on renal ischemia reperfusion injury in rats. Iran. J. Basic Med. Sci. [Internet]. 2013; 16(12):1209–1216. doi: https://doi.org/ndjp

Banaei S, Ahmadiasl N, Alihemmati A. Comparison of the protective effects of erythropoietin and melatonin on renal ischemia–reperfusion injury. Trauma Mon. [Internet]. 2016; 21(3):e23005. doi: https://doi.org/gt7gmf

Stoyanoff TR, Rodríguez JP, Todaro JS, Colavita JPM, Torres AM, Aguirre MV. Erythropoietin attenuates LPS–induced microvascular damage in a murine model of septic acute kidney injury. Biomed. Pharmacother. [Internet]. 2018; 107:1046–1055. doi: https://doi.org/gfcfpw

Shrivastava M, Dwivedi LK. Therapeutic potential of Hypericum perforatum: a review. Int. J. Pharm. Sci. Res. [Internet]. 2015; 6(12):4982–4988. doi: https://doi.org/ndjr

Keskin C. Antioxidant, anticancer and anticholinesterase activities of flower, fruit and seed extracts of Hypericum amblysepalum HOCHST. Asian Pac. J. Cancer Prev. [Internet]. 2015; 16(7):2763–2769. doi: https://doi.org/gt7gmg

Raso GM, Pacilio M, Di Carlo G, Esposito E, Pinto L, Meli R. In–vivo and in–vitro anti–inflammatory effect of Echinacea purpurea and Hypericum perforatum. J. Pharm. Pharmacol. [Internet]. 2002; 54(10):1379–1383. doi: https://doi.org/b8vd5p

Saddiqe Z, Naeem I, Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. [Internet]. 2010; 131(3):511–21. doi: https://doi.org/cq4b4b

Cakir M, Duzova H, Baysal I, Gül CC, Kuşcu G, Kutluk F, Çakin H, Şeker Ş, İlbeği E, Uslu S, Avci U, Demir S, Akinci C, Atli S. The effect of Hypericum perforatum on kidney ischemia/reperfusion damage. Ren. Fail. [Internet]. 2017; 39(1):385–391. doi: https://doi.org/gkcr83

Sologub V, Grytsyk A. The research of the hypericum extract’s pharmacological activity. Pharm. Innov. [Internet]. 2013 [cited 12 Feb. 2024]; 1(11):85–89. Available in: https://goo.su/ANeKt

Yaman I, Balikci E. Protective effects of Nigella sativa against gentamicin–induced nephrotoxicity in rats. Exp. Toxicol. Pathol. [Internet]. 2010; 62(2):183–190. doi: https://doi.org/ffvrpp

Rjiba–Touati K, Ayed–Boussema I, Bouaziz C, Belarbia A, Azzabi A, Achour A, Hassen W, Bacha H. Protective effect of erythropoietin against cisplatin–induced nephrotoxicity in rats: antigenotoxic and antiapoptotic effect. Drug Chem. Toxicol. [Internet]. 2012; 35(1):89–95. doi: https://doi.org/fd5ztv

Elhadidy ME, Salama AAA, El–Kassaby M, Omara EA. Protective effect of Hypericum perforatum on dexamethasone–induced diabetic depression in rats. J. Arab. Soc. Med. Res. [Internet]. 2019; 14(1):25–32. doi: https://doi.org/gt7gmj

Placer ZA, Cushman LL, Johnson BC. Protective effect of Hypericum perforatum on dexamethasone–induced diabetic depression in rats . Anal. Biochem. [Internet]. 1966; 16(2):359–364. doi: https://doi.org/b96rpj

Sedlak J, Lindsay RH. Estimation of total, protein–bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. [Internet]. 1968; 25(1):192–205. doi: https://doi.org/csbsfm

Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium–deficient rat liver. Biochem. Biophys. Res. Commun. [Internet]. 1976; 71(4):952–958. doi: https://doi.org/d3vv59

Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. [Internet]. 1991; 196(2–3):143–151. doi: https://doi.org/fthsdb

Türk E, Guvenç M, Cellat M, Uyar A, Kuzu M, Ağgül AG, Kırbaş A. Zingerone protects liver and kidney tissues by preventing oxidative stress, inflammation, and apoptosis in methotrexate–treated rats. Drug Chem. Toxicol. [Internet]. 2022; 45(3):1054–1065. doi: https://doi.org/gt7gmk

Baykalir BG, Arslan AS, Mutlu SI, Ak TP, Seven I, Seven PT, Yaman M, Gul HF. The protective effect of chrysin against carbon tetrachloride–induced kidney and liver tissue damage in rats. Int. J. Vitam. Nutr. Res. [Internet]. 2020; 91(5–6):1–12. doi: https://doi.org/ndhk

Parlak Ak T, Yaman M, Bayrakdar A, Bulmus O. Expression of phoenixin–14 and nesfatin–1 in the hypothalamo–pituitary–gonadal axis in the phases of the estrous cycle. Neuropeptides [Internet]. 2023; 97:102299. doi: https://doi.org/gt7gmm

Vysakh A, Abhilash S, Jayesh K, Midhun SJ, Jyothis M, Latha MS. Protective effect of Rotula aquatica Lour against gentamicin induced oxidative stress and nephrotoxicity in Wistar rats. Biomed. Pharmacother. [Internet]. 2018; 106:1188–1194. doi: https://doi.org/gd6nqg

Jaikumkao K, Pongchaidecha A, Thongnak Lo, Wanchai K, Arjinajarn P, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Amelioration of renal inflammation, endoplasmic reticulum stress and apoptosis underlies the protective effect of low dosage of atorvastatin in gentamicin–induced nephrotoxicity. PLoS One [Internet]. 2016; 11(10):e0164528. doi: https://doi.org/f9rt92

Zaky HS, Abdel–Sattar SA, Allam A, Ahmed HI. Further insights into the impact of rebamipide on gentamicin–induced nephrotoxicity in rats: modulation of SIRT1 and β–catenin/cyclin D1 pathways. Drug Chem. Toxicol. [Internet]. 2022; 46(5):851–863. doi: https://doi.org/gt7gmn

Izol V, Aridoğan IA, Tansuğ Z, Doran F, Erdoğan KE, Kaplan HM, Şingirik E, Ertuğ P, Pazarci P. Hypericum perforatum extract attennuates gentamicin induced oxidative stress, apoptosis and oedema in kidney. Int. J. Pharmacol. [Internet]. 2019; 15(1):66–73. doi: https://doi.org/gt7gmp

El–Kashef DH, El–Kenawi AE, Suddek GM, Salem HA. Flavocoxid attenuates gentamicin–induced nephrotoxicity in rats. Naunyn–Schmiedeberg’s Arch. Pharmacol. [Internet]. 2015; 388(12):1305–1315. doi: https://doi.org/f72v7p

Antar SA, Al–Karmalawy AA, Mourad A, Mourad M, Elbadry M, Saber S, Khodir A. Protective effects of mirazid on gentamicin induced nephrotoxicity in rats through antioxidant, anti–inflammatory, JNK1/iNOS, and apoptotic pathways; novel mechanistic insights. Pharm. Sci. [Internet]. 2022; 28(4):525–540. doi: https://doi.org/gt5kjt

Adil M, Kandhare AD, Dalvi G, Ghosh P, Venkata S, Raygude KS, Bodhankar SL. Ameliorative effect of berberine against gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Ren. Fail. [Internet]. 2016; 38(6):996–1006. doi: https://doi.org/gmq9xj

Kandemir FM, Ozkaraca M, Yildirim BA, Hanedan B, Kirbas A, Kilic K, Aktas E, Benzer F. Rutin attenuates gentamicin–induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren. Fail. [Internet]. 2015; 37(3):518–525. doi: https://doi.org/gnp878

Thongchai P, Buranakarl C, Chaiyabutr N. Renal function and oxidative stress following gentamicin induced renal injury in rats treated with erythropoietin, iron and vitamin E. Thai J. Vet. Med. [Internet]. 2008; 38(2):19–27. doi: https://doi.org/gt7gmq

Akbaribazm M, Goodarzi N, Rahimi M, Naseri L, Khazae M. Anti–inflammatory, anti–oxidative and antiapoptotic effects of Heracleum persicum L. extract on rats with gentamicin – induced nephrotoxicity. Asian Pac. J. Trop. Biomed. [Internet]. 2021; 11(2):47–58. doi: https://doi.org/gt7gmr

Mohamed HZE, Shenouda MBK. Amelioration of renal cortex histological alterations by aqueous garlic extract in gentamicin induced renal toxicity in albino rats: a histological and immunohistochemical study. Alexandria J. Med. [Internet]. 2021; 57(1):28–37. doi: https://doi.org/gt7gms

Kandeil MAM, Hassanin KMA, Mohammed ET, Safwat GM, Mohamed DS. Wheat germ and vitamin E decrease BAX/BCL–2 ratio in rat kidney treated with gentamicin. Beni–Suef Univ. J. Basic Appl. Sci. [Internet]. 2018; 7(3):257–262. doi: https://doi.org/gt7gmt

Zhang J, Zhao D, Na N, Li H, Miao B, Hong L, Huang Z. Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF–κβ pathway in ischemia/reperfusion injury after renal transplantation. Int. J. Mol. Med. [Internet]. 2018; 41(1):25–32. doi: https://doi.org/gt7gmv

Caglar HG, Selek S, Koktasoglu F, Koyuncu I, Demirel M, Sarikaya A, Meydan S. Effect of Camellia sinensis, Hypericum perforatum and Urtica dioica on kidney and liver injury induced by carbon tetrachloride in rats. Cell Mol. Biol. [Internet]. 2019; 65(5):79–86. doi: https://doi.org/gt7gmw

Publicado
2024-08-25
Cómo citar
1.
Parlak Ak T, Sağıroğlu M, Korkmaz GE, Yaman M. La eritropoyetina y el Hypericum perforatum mejoran la nefrotoxicidad inducida por gentamicina en ratas. Rev. Cient. FCV-LUZ [Internet]. 25 de agosto de 2024 [citado 20 de noviembre de 2024];34(2):8. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/42617
Sección
Medicina Veterinaria