Assessing the nutritional value, fermentation quality, and in vitro degradability of mulberry pomace silage ensiled with sumac additive
Abstract
This study investigates the effects of sumac addition on the nutrient composition, in vitro degradability, and fermentation quality of mulberry pomace silage. Mulberry pomace is rich in protein, making it a valuable feed resource for livestock production. However, its high protein content may lead to increased proteolysis during silage fermentation, resulting in elevated pH levels and undesirable butyric acid production. Sumac, which is rich in tannins and organic acids, has the potential to inhibit proteolysis and enhance the fermentation process, thereby improving silage quality. Therefore, investigating the effects of sumac addition on the nutritional composition and fermentation characteristics of mulberry pomace silage is of significant importance. Mulberry pomace was ensiled in vacuum-sealed jars as an untreated control group (M) and in triplicate with the following treatments: 5% sumac group (MS-5) and 10% sumac group (MS-10). The silos (n=18) were stored for 45 days. After the ensiling period, the jars were opened, and physical and chemical analyses were conducted on the silage samples. The addition of sumac to mulberry pomace silage had a significant effect on dry matter (DM) content (P < 0.001), with the highest DM level observed in the silage group containing 10% sumac. Sumac addition (10%) increased the crude protein content (12.96%) (P < 0.05) while decreasing pH (3.69) and ammonia nitrogen (3.85%) levels (P < 0.05). Compared to the control group, the levels of neutral detergent fiber (23.92%) (P < 0.01), acid detergent fiber (15.41%) (P < 0.05), and acid detergent lignin (7.24%) (P < 0.05) were significantly lower in the 10% sumac group. In conclusion, the addition of sumac to mulberry pomace silage positively enhanced silage quality, contributing to improved fermentation by inhibiting proteolysis due to its tannin content.
Downloads
References
Shuo W, Peishan H, Chao Z, Wei Z, Xiaoyang C, Qing Z. Novel strategy to understand the aerobic deterioration of corn silage and the influence of Neolamarckia cadamba essential oil by multi-omics analysis. Chem. Eng. J. [Internet]. 2024; 482:148715. doi: https://doi.org/ph9q DOI: https://doi.org/10.1016/j.cej.2024.148715
Büyükkiliç-Beyzi S, Ülger I, Kaliber M, Konca Y. Determination of chemical, nutritional, and fermentation properties of citrus pulp silages. TURJAF. [Internet]. 2018; 6(12):1833. doi: https://doi.org/ph9r DOI: https://doi.org/10.24925/turjaf.v6i12.1833-1837.2229
Ayasan T, Sucu E, Ülger I, Hizli H, Çubukcu P, Özcan BD. Determination of in vitro rumen digestibility and potential feed value of tiger nut varieties. S. Afr. J. Anim. Sci. [Internet]. 2020; 50(5):738-744. doi: https://doi.org/ph9s DOI: https://doi.org/10.4314/sajas.v50i5.12
Büyükkiliç Beyzi S, Ülger I, Konca Y. Chemical, fermentative, nutritive, and anti-nutritive composition of common reed (Phragmites australis) plant and silage. WBV. [Internet]. 2022; 14(4):1-10. doi: https://doi.org/gvvpvk DOI: https://doi.org/10.1007/s12649-022-01903-w
Kaya IB, Selçuk Z. Investigation of availability of dried mulberry pomace instead of barley for ruminants. Kocatepe Vet. J. [Internet]. 2021; 14(2):177-186. doi: https://doi.org/ph9t DOI: https://doi.org/10.30607/kvj.865918
Köksal Y, Bölükbas B, Selçuk Z. An In Vitro Evaluation of the Silage Mixtures Containing Different Levels of White Mulberry Pomace and Meadow Grass. KVJ. [Internet]. 2021;14(3):309-15. doi: https://doi.org/ph9v DOI: https://doi.org/10.30607/kvj.923403
Zhou B, Meng QX, Ren LP, Shi FH, Wie Z, Zhou ZM. Evaluation of chemical composition, in situ degradability, and in vitro gas production of ensiled and sun-dried mulberry pomace. J. Anim. Feed Sci. [Internet]. 2012; 21(1):188-197. doi: https://doi.org/f3wttb DOI: https://doi.org/10.22358/jafs/66063/2012
Tatli-Seven P, Yildirim EN, Seven I, Kaya CA, Iflazoglu-Mutlu S. An evaluation of the effectiveness of sumac and molasses as additives for alfalfa silage: Influence on nutrient composition, in vitro degradability and fermentation quality. J. Anim. Physiol. Anim. Nutrit. [Internet]. 2024; 108(4):1096-1106. doi: https://doi.org/ph9w DOI: https://doi.org/10.1111/jpn.13955
Tabacco E, Borreani G, Crovetto GM, Galassi G, Colombo D, Cavallarin L. Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage. J. Dairy Sci. [Internet]. 2006; 89(12):4736 4746. doi: https://doi.org/dkbzt9 DOI: https://doi.org/10.3168/jds.S0022-0302(06)72523-1
Besharati M, Maggiolino A, Palangi V, Kaya A, Jabbar M, Eseceli H, De Palo P, Lorenzo JM. Tannin in ruminant nutrition: Review. Mol. [Internet]. 2022; 27(23):8273. doi: https://doi.org/gtkgxt DOI: https://doi.org/10.3390/molecules27238273
Sengül AY, Aydin R. Use of farmatan as an additive to make alfalfa silage. TURKJANS. [Internet]. 2019; 6(3):579-587. doi: https://doi.org/ph9x DOI: https://doi.org/10.30910/turkjans.595395
He L, Lv H, Xing Y, Chen X, Zhang Q. Intrinsic tannins affect ensiling characteristics and proteolysis of Neolamarckia cadamba leaf silage by largely altering bacterial community. Bioresour Technol. [Internet]. 2020; 311:123496. doi: https://doi.org/gzkv7w DOI: https://doi.org/10.1016/j.biortech.2020.123496
He L, Lv H, Chen N, Wang C, Zhou W, Chen X, Zhang Q. Improving fermentation, protein preservation and antioxidant activity of Moringa oleifera leaves silage with gallic acid and tannin acid. Bioresour. Technol. [Internet]. 2020; 297:122390. doi: https://doi.org/ghj27m DOI: https://doi.org/10.1016/j.biortech.2019.122390
Jayanegara A, Sujarnoko TUP, Ridla M, Kondo M, Kreuzer M. Silage quality as influenced by concentration and type of tannins present in the material ensiled: a meta-analysis. J. Anim. Physiol. Anim. Nutr. [Internet]. 2019; 103(2):456-465. doi: https://doi.org/ph96 DOI: https://doi.org/10.1111/jpn.13050
Wischer G, Boguhn J, Steingaß H, Schollenberger M, Rodehutscord M. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Anim. [Internet]. 2013; 7(11):1796-805. doi: https://doi.org/f5cftt DOI: https://doi.org/10.1017/S1751731113001481
Basaran U, Gulumser E, Mut H, Çopur-Dogrusöz M. Determination of Silage Yield and Quality of Grasspea+ Cereal Intercrops. Turkish JAF Sci.Tech. [Internet]. 2018[cited Nov 23 2024]; 6(9):1237-1242. Available in: https://goo.su/zrI7H DOI: https://doi.org/10.24925/turjaf.v6i9.1237-1242.2022
AOAC. Official Methods of Analysis. 18th.Ed. Association of Official Analytical Chemists, Gaithersburg: MD; 2006.
Van-Soest PJ, Robertson JD, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. JDS. [Internet]. 1991; 74(10):3583-3597. doi: https://doi.org/b6c78f DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Kirchgessner M, Kellner RJ, Roth FX .Zur schätzung des futterwertes mittels rohfaser und der zellwandfraktionen der detergentien-analyse. Landwirtsch. Forsch. [Internet]. 1977[cited Nov 18 2024]; 30:245-250. Available in: https://goo.su/sznMR1
Tilley JMA, Terry RA. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. [Internet]. 1963; 18(2):104-111. doi: https://doi.org/c4kw3p DOI: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
ANKOM. Ankom Technology Method 3. In-vitro true digestibility using the DAISYII Incubator; 2020. [Internet]. Available in: https://goo.su/9jZ9kz
SPSS. Statistics for Windows, Version 22.0. IBM Copyright SPSS Inc, Armonk, NY; 2013.
Özkan ÇÖ. Utilization of Gleditsia (Gleditsia triacanthos) f r u i t i n s u g a r b e e t p u l p s i l a g e. [ P h . D. t h e s i s ] . Kahramanmaraş (Turkey): Kahramanmaraş Sütçü İmam University, Institute of Natural Sciences; 2012: 81 p. Available in: https://goo.su/kFXs
Kamalak A, Şahin M, Canbolat Ö, Kurt Ö. The effect of tannin extract (Artutan) as a silage additive on the quality characteristics of clover silage and its effects on feed consumption, digestion, and rumen fermentation in sheep. VIth International Balkan Animal Conference BALNIMALCON 2013. 3-5 October 2013 Tekirdag / Turkey. Project No: 111 O 821. TUBITAK. [Internet]. 2014. Available in: https://goo.su/uYau
Malhatun Çotuk G, Soycan Önenç S. Yonca silajına kepek ve puding ilavesinin silaj fermantasyonu, aerobik stabilite ve in vitro sindirilebilirlik üzerine etkileri. Hayvansal Üret. [Internet]. 2016[cited Nov 23 2024]; 58:13-19. Available in: https://goo.su/om1N
Canbolat Ö, Kalkan H, Filya I. Yonca silajlarinda katki maddesi olarak gladiçya meyvelerinin (Gleditsia triacanthos) kullanilma olanaklari. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2013; 19:291-297. doi: https://doi.org/ph98 DOI: https://doi.org/10.9775/kvfd.2012.7710
Filya I. Silage fermentation. Atatürk Univ. J. Agric. Fac. [Internet]. 2001[cited Nov 13 2024]; 32:87–93. Available in: https://goo.su/H0QtcK
Bai J, Dongmei X, Dongmei X, Musen W, Ziqian L, Xusheng G. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. [Internet]. 2020; 315:123881. doi: https://doi.org/gwj8wk DOI: https://doi.org/10.1016/j.biortech.2020.123881
Koc F, Karapinar B, Okuyucu B, Korucu-Erdem D. The effects of kefir addition on the fermentation characteristics and aerobic stability of alfalfa silages. KSU J. Agric Nat. [Internet]. 2020;23(2):535–542. doi: https://doi.org/pjbb DOI: https://doi.org/10.18016/ksutarimdoga.vi.620292
Li X, Tian J, Zhang Q, Jiang Y, Wu Z, Yu Z. Effects of mixing red clover with alfalfa at different ratios on dynamics of proteolysis and protease activities during ensiling. J. Dairy Sci. [Internet]. 2018; 101(10):8954-8964. doi: https://doi.org/gfcbxt DOI: https://doi.org/10.3168/jds.2018-14763
Song C, Li J, Xing J, Wang C, Li J, Shan A. Effects of molasses interacting with formic acid on the fermentation characteristics, proteolysis and microbial community of seed-used pumpkin leaves silage. J. Clean. Prod. [Internet]. 2022; 380(2):135186. doi: https://doi.org/gtbdbg DOI: https://doi.org/10.1016/j.jclepro.2022.135186
Baguç Y, Aksu T. Elma (Malus pumila) katkisinin yas seker pancari posasi silaji kalitesine etkisi. Ataturk Univ. Vet. Bilim. Derg. [Internet]. 2021; 16(1):49–56. Available in: https://goo.su/BsStnoU
Bingöl NT, Karsli MA, Bolat D, Akça I. Vejetasyonun farkli dönemLerinde hasat edilen korungaya ilave edilen melas ve formik asit’in silaj kalitesi ve in vitro kuru madde sindirilebilirligi üzerine etkileri. Van. Vet. J. [Internet]. 2008[cited Dec 3 2024]; 19(2):61-66. Available in: https://goo.su/kJGv
Ugurlu S, Okuyucu B, Özdüv en ML . Bak t eriy el inokulantlarin çavdar (Secale cereale L.) hasili silajlarinda fermantasyon, aerobik stabilite ve yem degeri üzerine etkileri. TURJAF. [Internet]. 2022; 10(3):426–433. doi: https://doi.org/pjbc DOI: https://doi.org/10.24925/turjaf.v10i3.426-433.4994
Koç F, Coskuntuna L, Ozduven ML. The effect of bacteria+enzyme mixture silage inoculant on the fermentation characteristic, cell wall contents and aerobic stabilities of maize silage. Pak. J. Nutr. [Internet]. 2008; 7(2):222-226. doi: https://doi.org/bv98rb DOI: https://doi.org/10.3923/pjn.2008.222.226
Ulger I, Özdemir M. Atik kirmizi ve beyaz üzüm posalarinin alternatif kaba yem kaynagi olarak silolanmasinin besin madde kompozisyonu ve silaj kalite özellikleri üzerine etkileri. OKÜ Fen Bil. Ens. Dergisi. [Internet]. 2023; 6(1):792-805. doi: https://doi.org/pjbd DOI: https://doi.org/10.47495/okufbed.1160833
Basar Y, Atalay AI. The use of citrus pulps as an alternative feed source in ruminant feeding and ist methane production capacities. JIST. [Internet]. 2020;10(2):1449–1455. doi: https://doi.org/pjbf DOI: https://doi.org/10.21597/jist.725292
