Correlation of PaO2/FiO2, SaO2/FiO2 and SpO2/FiO2 in healthy canines located at high altitude
Abstract
Arterial oxygen pressure (PaO2) decreases with increasing altitude above sea level; therefore, the expected values of arterial oxygen saturation (SaO2) and other PaO2–dependent respiratory indices change with altitude, as well as peripheral oxygen saturation (SpO2). Currently there are few published data on lung function indices in the clinical setting of canines living at high altitude while breath fraction of inspired oxygen (FiO2) of 21 %. This study aimed to identify PaO2/FiO2 (PF), SaO2/FiO2 (SF) and SpO2/FiO2 (SPF) values and their correlation, in a sample of healthy canines living at 2567 masl. Arterial gas and pulse oximetry data were collected in 17 clinically healthy canines. Arterial samples were collected 5 to 10 min after administration of intravenous acepromazine at 0.025 mg·kg-1. Mean PaO2 values of 67 ± 6.87 mmHg and 91.67 ± 2.33 % and 90.41 ± 3.92 % were identified for SaO2 and SpO2, respectively. For the PF, SF and SPF indices, values of 319.08 ± 32.71, 436.53 ± 11.1 and 430.53 ± 18.67 were obtained, respectively. The correlation between PF and SF was good (r: 0.94; P=0.0001) and between PF and SPF was weak (r: 0.35; P=0.16). In conclusion, the values of the PF, SF and SPF indices are lower than the values previously reported at low altitude. It is suggested that the altitude above sea level, the degree of hypoxemia and the pulse oximetry technique may affect the correlation between PF and SPF.
Downloads
References
Carver A, Bragg R, Sullivan L. Evaluation of PaO2/FiO2 and SaO2/FiO2 ratios in postoperative dogs recovering on room air or nasal oxygen insufflation. J. Vet. Emerg. Crit. Care. [Internet]. 2016; 26(3):437–445 doi: https://doi.org/n4pg DOI: https://doi.org/10.1111/vec.12475
Buttrick ML, Riedesel DH, Selcer BA, Barstad RD. Hypoxemia in the acutely traumatized canine patient. J. Vet. Emerg. Crit. Care. [Internet]. 1992; 2:73–79. doi: https://doi.org/bhjn9d DOI: https://doi.org/10.1111/j.1476-4431.1992.tb00095.x
Piemontese C, Stabile M, Di–Bella C, Scardia A, Vicenti C, Acquafredda C, Crovace A, Lacitignola L, Staffieri F. The incidence of hypoxemia in dogs recovering from general anesthesia detected with pulse–oximetry and related risk factors. Vet. J. [Internet]. 2024; 305:106–135. doi: https://doi.org/n4ph DOI: https://doi.org/10.1016/j.tvjl.2024.106135
Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Roger L, Morris A, Spragg R. The American–European consensus conference on ARDS definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. [Internet]. 1994; 149(3 Pt 1):819–824. doi: https://doi.org/ggc7hp DOI: https://doi.org/10.1164/ajrccm.149.3.7509706
Luks AM, Swenson ER. Pulse oximetry at high altitude. High Alt. Med. Biol. [Internet]. 2011; 12(2):109–119. doi: https://doi.org/fwnz53 DOI: https://doi.org/10.1089/ham.2011.0013
Calabro JM, Prittie JE, Palma DA. Preliminary evaluation of the utility of comparing SpO2/FiO2 and PaO2/FiO2 ratios in dogs. J. Vet. Emerg. Crit. Care [Internet]. 2013; 23(3):280–285 doi: https://doi.org/n4pj DOI: https://doi.org/10.1111/vec.12050
De Carvalho EB, Sobreira–Leite TR, de Magalhães–Sacramento RF, Loureiro do–Nascimento PR, Samary CS, Macedo–Rocco PR, Silva PL. Justificativa e limitações da SpO2/FiO2 como possível substituta da PaO2/FiO2 em diferentes cenários pré–clínicos e clínicos. Rev. Bras. Ter. Intensiva [Internet]. 2022; 34(1):185–196 doi: https://doi.org/n4pk DOI: https://doi.org/10.5935/0103-507X.20220013-pt
Matthews NS, Hartke S, Allen–Jr JC. An evaluation of pulse oximeters in dogs, cats and horses. Vet. Anaesth. Analg. [Internet]. 2003; 30(1):3–14 doi: https://doi.org/cbs2wn DOI: https://doi.org/10.1046/j.1467-2995.2003.00121.x
Zanusso F, De Benedictis GM, Zemko P, Bellini L. Non–invasive assessment of oxygenation status using the oxygen reserve index in dogs. BMC. Vet. Res. [Internet]. 2023; 19(1):241. doi: https://doi.org/n4pm DOI: https://doi.org/10.1186/s12917-023-03804-z
Bilan N, Dastranji A, Behbahani–Ghalehgolab A. Comparison of the PaO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or acute respiratory distress syndrome. J. Cardiovasc. Thorac. Res. [Internet]. 2015; 7(1):28–31 doi: https://doi.org/gfwrkx DOI: https://doi.org/10.15171/jcvtr.2014.06
Chen W, Janz DR, Shaver CM, Bernard GR, Bastarache JA, Ware LB. Clinical characteristics and outcomes are similar in ARDS diagnosed by oxygen saturation/FiO2 ratio compared with PaO2/FiO2 Ratio. Chest [Internet]. 2015; 148(6):1477–1483. doi: https://doi.org/f76v66 DOI: https://doi.org/10.1378/chest.15-0169
Khemani RG, Patel NR, Bart RD, Newth CJL. Comparison of the pulse oximetric saturation/fraction of inspired oxygen ratio and the PaO2/fraction of inspired oxygen ratio in children. Chest. [Internet]. 2009; 135(3):662–668. doi: https://doi.org/b9mfh3 DOI: https://doi.org/10.1378/chest.08-2239
Lobete C, Medina A, Rey C, Mayordomo–Colunga J, Concha A, Menéndez S. Correlation of oxygen saturation as measured by pulse oximetry/fraction of inspired oxygen ratio with PaO2/fraction of inspired oxygen ratio in a heterogeneous sample of critically ill children. J. Crit. Care. [Internet]. 2013; 28(4):538.e1–538.e7. doi: https://doi.org/f27q2r DOI: https://doi.org/10.1016/j.jcrc.2012.12.006
Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. Comparison of the SpO2/FiO2 ratio and the PaO2/FiO2 ratio in patients with acute lung injury or ARDS. Chest [Internet]. 2007; 132(2):410–417. doi: https://doi.org/c5xv5f DOI: https://doi.org/10.1378/chest.07-0617
Rottgering JG, De Man AME, Schuurs TC, Wils E–J, Daniels JM, Van den – Aardweg JG, Girbes ARJ, Smulders YM. Determining a target SpO2 to maintain PaO2 within a physiological range. PLoS One [Internet]. 2021; 16(5):e0250740. doi: https://doi.org/n4pn DOI: https://doi.org/10.1371/journal.pone.0250740
Thomas NJ, Shaffer ML, Willson DF, Shih M–C, Curley MAQ. Defining acute lung disease in children with the oxygenation saturation index. Pediatr. Crit. Care Med. [Internet]. 2010; 11(1):12–17. doi: https://doi.org/cg5wxr DOI: https://doi.org/10.1097/PCC.0b013e3181b0653d
Fairman NB. Evaluation of pulse oximetry as a continuous monitoring technique in critically intensive ill dogs in the small animal care unit. J. Vet. Emerg. Crit. Care [Internet]. 1992; 2(2):50–56. doi: https://doi.org/cgnv8n DOI: https://doi.org/10.1111/j.1476-4431.1992.tb00092.x
Arulpagasam S, Lux C, Odunayo A, Biskup J, Sun X. Evaluation of pulse oximetry in healthy brachycephalic dogs. J. Am. Anim. Hosp. Assoc. [Internet]. 2018; 54(6):344–350. doi: https://doi.org/gfm3bg DOI: https://doi.org/10.5326/JAAHA-MS-6654
Farrell KS, Hopper K, Cagle LA, Epstein SE. Evaluation of pulse oximetry as a surrogate for PaO2 in awake dogs breathing room air and anesthetized dogs on mechanical ventilation. J. Vet. Emerg. Crit. Care [Internet]. 2019;29(6):1–8. doi: https://doi.org/n4pp DOI: https://doi.org/10.1111/vec.12898
Ortiz G, Bastidas A, Garay–Fernández M, Lara A, Benavides M, Rocha E, Buitrago A, Díaz G, Ordóñez J, Reyes LF . Correlation and validity of imputed PaO2/FiO2 and SpO2/FiO2 in patients with invasive mechanical ventilation at 2600 m above sea level. Med. Intensiva [Internet]. 2022; 46(9):501–507. doi: https://doi.org/n4pq DOI: https://doi.org/10.1016/j.medin.2021.05.001
López–Vergara MI. Correlación y concordancia por diferentes métodos del índice PaO2/FiO2 con el índice SaO2/FiO2 a gran altitud en la unidad de cuidado intensivo del Hospital Santa Clara de Bogotá, entre junio de 2016 a junio de 2018 [tesis de grado en Internet]. Bogotá (Colombia): Universidad El Bosque; 2019 [consultado 11 Jul. 2023]. 60 p. Disponible en: https://n9.cl/2vnaf.
Bermúdez–Duarte PM, Dalmau–Barros EA. Interpretation of arterial gases in canines with respiratory pathologies. Rev. Vet. (UNNE). [Internet]. 2024; 35(1):79–92. doi: https://doi.org/n4pr DOI: https://doi.org/10.30972/vet.3517485
Pérez–Padilla JR. Altitude, the ratio of PaO2 to fraction of inspired oxygen, and shunt: impact on the assessment of acute lung injury. Arch. Bronconeumo. [Internet]. 2004; 40(10):459–462. doi: https://doi.org/crrnxc DOI: https://doi.org/10.1016/S1579-2129(06)60356-X
Liu X, Pan C, Si L, Tong S, Niu Y, Qiu H, Gan G. Definition of acute respiratory distress syndrome on the plateau of Xining, Qinghai: A verification of the Berlin definition altitude–PaO2/FiO2–corrected criteria. Front. Med. [Internet]. 2022; 9:648835. doi: https://doi.org/n4pt DOI: https://doi.org/10.3389/fmed.2022.648835
Zhang SF, Lin SX, Gao W, Liu HP, Liu Y, Zhang DH, Chen TD, Guo YM, Huang YX. Report of the consensus conference on diagnostic criteria of ALI/ARDS at high altitudes in Western China. Intensive Care Med. [Internet]. 2001; 27(9):1539–1546. doi: https://doi.org/ffq5vb DOI: https://doi.org/10.1007/s001340101052
Moncada Nuela YC. Revisión y monitoreo de las diferentes etapas anestésicas: prequirúrgica, intraquirúrgica y postquirúrgica de los caninos (Canis lupus familiaris). [tesis de grado en Internet]. Machala (Ecuador): Universidad Técnica de Machala; 2020 [consultado 09 Oct. 2024]. 47 p. Disponible en: https://goo.su/0yplzM
Bernal–Bernal LD, Pineda–Gutierrez FD. Valores de gases arteriales y electrolitos en 50 caninos sanos en la sabana de Bogotá medidos con el sistema de análisis de sangre EPOC® [tesis de grado en Internet]. Bogotá (Colombia): Universidad de La Salle; 2013 [consultado 16 Nov. 2023]. 37 p. Disponible en: https://n9.cl/30d1o
Hoareau GL, Jourdan G, Mellema M, Verwaerde P. Evaluation of arterial blood gases and arterial blood pressures in brachycephalic dogs. J. Vet. Intern. Med. [Internet]. 2012; 26(4):897–904. doi: https://doi.org/ggv7k5 DOI: https://doi.org/10.1111/j.1939-1676.2012.00941.x
Holowaychuk MK, Hansen BD, DeFrancesco TC, Marks SL. Ionized hypocalcemia in critically ill dogs. J. Vet. Intern. Med. [Internet]. 2009; 23(3):509–513. doi: https://doi.org/cj2rm4 DOI: https://doi.org/10.1111/j.1939-1676.2009.0280.x
Wilkins PA, Otto CM, Baumgardner JE, Dunkel B, Bedenice D, Paradis MR, Staffieri F, Syring RS, Slack J, Grasso S, Pranzo G. Acute lung injury and acute respiratory distress syndromes in veterinary medicine: consensus definitions: the Dorothy Russell Havemeyer working group on ALI and ARDS in veterinary medicine. J. Vet. Emerg. Crit. Care [Internet]. 2007; 17(4):333–339. doi: https://doi.org/dc2cjt DOI: https://doi.org/10.1111/j.1476-4431.2007.00238.x
Gómez–Duque A, Fernández G, Quijano M, León L, Quitián D, Gómez–Quintero C. Utilidad de la relación Sao2/Fio2 en la evaluación del grado de compromiso pulmonar en pacientes críticos. Rev. Fac. Med. [Internet]. 2002 [cited 2 Aug 2024];50(1):2–7. Disponible en: https://n9.cl/6h1ib
Marmanillo–Mendoza G, Zuñiga–Manrique R, Cornejo–DelValle O, Canqui LP. SatO2/FiO2 rate versus PaO2/FiO2 rate for predicting mortality in patients with COVID–19 in a high–altitude hospital. Acta Méd. Peru. [Internet]. 2021; 38(4):273–278. doi: https://doi.org/n4pv DOI: https://doi.org/10.35663/amp.2021.384.2033
Jibaja M, Ortiz–Ruiz G, García F, Garay–Fernández M, de Jesús–Montelongo F, Martinez J, Virues JA, Baez – Pravia O, Salazar S, Villacorta–Cordova F, Morales F, Tinoco – Solórzano A, Ibañez–Guzmán C, Valle–Pinheiro B, Zubia–Olaskoaga F, Dueñas C, Lara–Garcia A, Cardinal–Fernández P. Hospital mortality and effect of adjusting PaO2/FiO2 according to altitude above the sea level in acclimatized patients undergoing invasive mechanical ventilation. A multicenter study. Arch. Bronconeumol. [Internet]. 2020; 56(4):218–224 doi: https://doi.org/n4pw DOI: https://doi.org/10.1016/j.arbres.2019.06.024
Leteurtre S, Dupré M, Dorkenoo A, Lampin ME, Leclerc F. Assessment of the Pediatric Index of mortality 2 with the PaO2/FiO2 ratio derived from the SpO2/FiO2 ratio: A prospective pilot study in a French pediatric intensive care unit. Pediatr. Crit. Care Med. [Internet]. 2011; 12(4):184–186. doi: https://doi.org/c45x7r DOI: https://doi.org/10.1097/PCC.0b013e3181fe3064
Miranda MC, López–Herce J, Martínez MC, Carrillo A. Relación de la relación PaO2/FiO2 y SatO2/FiO2 con la mortalidad y la duración de ingreso en niños críticamente enfermos. An. Pediatr. [Internet]. 2012; 76(1):16–22. doi: https://doi.org/d5gxdf DOI: https://doi.org/10.1016/j.anpedi.2011.06.006
Pandharipande PP, Shintani AK, Hagerman HE, St–Jacques PJ, Rice TW, Sanders NW, Ware LB, Bernard GR, Ely EW. Derivation and validation of SpO2/FiO2 ratio to impute for PaO2/FiO2 ratio in the respiratory component of the sequential organ failure assessment score. Crit. Care Med. [Internet]. 2009; 37(4):1317–1321. doi: https://doi.org/bft8hm DOI: https://doi.org/10.1097/CCM.0b013e31819cefa9
Jusi RL, Limpin MB, Bayot RD, De Guia T, Ayuyao F. Determination of critical threshold value of SpO2/FiO2 ratio in the diagnosis of acute lung injury. Eur. Respir. J. [Internet]. 2012 [consultado 24 Ago. 2024]; 40(Supl.56):P2020. Available from: https://goo.su/emrRgJ
Batchinsky AI, Wendorff D, Jones J, Beely B, Roberts T, Choi JH, Harea G, Cancio LC, Davis M, Cannon J, Sams V. Noninvasive SpO2/FiO2 ratio as surrogate for PaO2/FiO2 ratio during simulated prolonged field care and ground and high–altitude evacuation. J. Trauma Acute Care Surg. [Internet] .2020; 89(2S):S126–S131. doi: https://doi.org/gh6wx8 DOI: https://doi.org/10.1097/TA.0000000000002744
Eicher L, Young AA, Hoover L, Kuo KW, Her J. Retrospective evaluation of the respiratory rate–oxygenation index to predict the outcome of high–flow nasal cannula oxygen therapy in dogs (2018–2021): 81 cases. J. Vet. Emerg. Crit. Care (San Antonio). [Internet]. 2024; 34(3):252–261. doi: https://doi.org/n4px DOI: https://doi.org/10.1111/vec.13373
Prosperi P, Verratti V, Taverna A, Rua R, Bonan S, Rapacchiale G, Bondi D, Di Giulio C, Lorkowski J, Spacone A. Ventilatory function and oxygen delivery at high altitude in the Himalayas. Respir. Physiol. Neurobiol. [Internet]. 2023; 314:104086. doi: https://doi.org/n4pz DOI: https://doi.org/10.1016/j.resp.2023.104086
Weil JV. Variation in human ventilatory control – Genetic influence on the hypoxic ventilatory response. Respir. Physiol. Neurobiol. [Internet]. 2003; 135(2–3):239–246. doi: https://doi.org/bj2dcg DOI: https://doi.org/10.1016/S1569-9048(03)00048-X
Collins JA, Rudenski A, Gibson J, Howard L, O’Driscoll R. Relating oxygen partial pressure, saturation and content: The haemoglobin–oxygen dissociation curve. Breathe. Eur. Respir. J. [Internet]. 2015; 11(3):194–201. doi: https://doi.org/gccv33 DOI: https://doi.org/10.1183/20734735.001415
Chan ED, Chan MM, Chan MM. Pulse oximetry: Understanding its basic principles facilitates appreciation of its limitations. Respir. Med. [Internet]. 2013; 107(6):789–799. doi: https://doi.org/f2pdwj DOI: https://doi.org/10.1016/j.rmed.2013.02.004
Raposo–Monteiro E, Rodrigues–Junior A, Quirilos–Assis HM, Campagnol D, Quitzan JG. Comparative study on the sedative effects of morphine, methadone, butorphanol or tramadol, in combination with acepromazine, in dogs. Vet. Anaesth. Analg. [Internet]. 2009; 36(1):25–33. doi: https://doi.org/c2cqms DOI: https://doi.org/10.1111/j.1467-2995.2008.00424.x

Copyright (c) 2025 Jorge Raúl Hortúa–Pulido, Paula María Bermúdez–Duarte, Ernesto Andrés Dalmau–Barros, Juan Carlos Mancipe, Edgar Iván Martín–Abaunza

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.