Sarcocystis aucheniae (Apicomplexa: Sarcocystidae) infection in muscle tissue of alpacas and llamas in Huancavelica, Peru
Abstract
Sarcocystis is of clinical importance in public health due to its neurotoxic activity; however, knowledge of the degree of infection in muscle tissues of camelids is limited. In this work, the level of Sarcocystis aucheniae infection in muscle tissue of alpacas and llamas slaughtered for human consumption was evaluated. We considered 969 alpacas and 800 llamas positive to S. aucheniae slaughtered in the Municipal slaughterhouse of Huancavelica, Perú. The detection of Sarcocystis in muscular tissues (neck, rib, diaphragm and inguinal area) was done by direct observation and macroscopic identification and the level of infection by the non–destructive method. S. aucheniae infection was found in alpacas (68%) and llamas (76%), being susceptible in male animals. The level of infection to the parasite was high in the neck (74–85%) and inguinal area (59–68%) in alpacas and llamas, with high frequencies in the neck (58%) and inguinal area (100%) in more than three places of origin, with predominance of infection in the neck (75%), inguinal area (70%) in Suri alpacas and in Chacu llamas (87%), fluctuating frequencies between 60 to 90% in animals with full mouth and four teeth in both species. Alpacas and female llamas presented higher infection in the neck (78–86%) and in males in the inguinal area (60–70%); likewise, there was higher infection in the neck and inguinal area in animals with good body condition and obese (62 to 100%) in both species. A high level of Sarcocystis aucheniae infection was evidenced in the muscle tissue of alpacas and llamas, being susceptible to the parasite in male animals.
Downloads
References
Siuce J, Manchego A, Sandoval N, More J, Chiok KL, Pezo D, Rivera H. Expresión de defensinas en yeyuno de crías de alpacas (Vicugna pacos) con enteropatías. Rev. Investig. Vet. Perú. [Internet] 2015; 26(2):317–327. doi: https://doi.org/g8w5ft
Popova T, Tejeda L, Peñarrieta JM, Smith, MA, Bush RD, Hopkins DL. Meat of South American camelids – sensory quality and nutritional composition. Meat Sci. [Internet]. 2021; 171:108285. doi; https://doi.org/g8w5fv
Martin M, Decker–Franco C, Romero S, Carletti T, Schnittger O, Florin–Christensen M. Molecular detection of Sarcocystis aucheniae in the blood of llamas from Argentina. Rev. Argent. Microbiol. [Internet]. 2016; 48(3):200–205. doi: https://doi.org/g8w5fw
Biffin TE, Smith MA, Bush RD, Morris S, Hopkins DL. The effect of whole carcase médium voltage electrical stimulation, tenderstretching and longissimus infusion with actinidin on alpaca meat quality. Meat Sci. [Internet]. 2020; 64:108107. doi: https://doi.org/g8w5fx
Romero S, Carletti T, Decker–Franco C, Moré G, Schnittger L, Florin–Christensen M. Seropositivity to Sarcocystis infection of llamas correlates with breeding practices. Vet. Parasitol. Reg. Stud. Reports [Internet]. 2017; 10:65–70. doi: https://doi.org/gn7q62
Veronesi F, Di Palma S, Gabrielli S, Morganti G, Milardi GL, Middleton B, Lepri E. Sarcocystis gigantea infection associated with granulomatous eosinophilic myositis in a horse. J. Vet. Diagnost. Investig. [Internet]. 2020; 32(4):611–615. doi: https://doi.org/g8w5fz
Amairia S, Jbeli, M, Mrabet S, Mahjoubi–Jebabli L, Gharbi M. Molecular prevalence of Sarcocystis spp. and Toxoplasma gondii in slaughtered equids in northern Tunisia. J. Equine Vet. Sci. [Internet]. 2023; 129:104894. doi: https://doi.org/g8w5f2
Irikura D, Saito M, Sugita–Konishi Y, Ohnishi T, Sugiyama KI, Watanabe M, Yamazaki A, Izumiyama S, Sato H, Kimura Y, Doi R, Kamata Y. Characterization of Sarcocystis fayeri’s actin–depolymerizing factor as a toxin that causes diarrhea. Genes Cells. [Internet]. 2017: 22(9):825–835. doi: https://doi.org/g8w5f3
Saeed MA, Rashid MH, Vaughan J, Abdul J. Sarcocystosis in South American camelids: The state of play revisited. Parasit. Vectors [Internet]. 2018; 11(146):1–11. doi: https://doi.org/g8w5f4
Wu Z, Sun J, Hu J, Song J, Deng S, Zhu N, Yang Y, Tao J. Morphological and molecular characterization, and demonstration of a definitive host, for Sarcocystis masoni from an Alpaca (Vicugna pacos) in China. Biology [Internet]. 2022; 11(7):1016. doi: https://doi.org/g8w5f5
Dubey JP, Calero–Bernal R, Rosenthal BM, Speer CA, Fayer R. Sarcocystosis of animals and humans [Internet]. 2nd ed. Boca Raton (Florida, EUA): CRC Press; 2016. 501 p. doi: https://doi.org/nx3r
Sazmand A, Joachim A. Parasitic diseases of camels in Iran (1931–2017) – a literature review. Parasite [Internet]. 2017; 24(21). doi: https://doi.org/gbjxch
Jiang N, Xin S, Zhu N, Yang L, Huang W, Hu J, Zhu X, Yang Y. First report of Sarcocystis masoni in a captive Alpaca (Vicugna pacos) from China. Front. Vet. Sci. [Internet]. 2021; 8:759252. doi: https://doi.org/g8w5f6
Moré G, Regensburger C, Laura Gos M, Pardini L, Verma SK, Ctibor J, Serrano–Martínez ME, Dubey JP, Venturini MC. Sarcocystis masoni, n. sp. (Apicomplexa: Sarcocystidae), and redescription of Sarcocystis aucheniae from llama (Lama glama), guanaco (Lama guanicoe) and alpaca (Vicugna pacos). Parasitology [Internet]. 2016; 143(5):617–626. doi: https://doi.org/f8g73r
Decker Franco C, Romero S, Ferrari A, Schnittger L, Florin–Christensen M. Detection of Sarcocystis aucheniae in blood of llama using a duplex semi–nested PCR assay and its association with cyst infestation. Heliyon [Internet]. 2018; 4(11):e00928. doi: https://doi.org/gj5r2q
Mohamed–Moustafa MA, Shimozuru M, Mohamed W, Taylor KR, Nakao R, Sashika M, Tsubota T. First molecular detection and characterization of Hepatozoon and Sarcocystis spp. in field mice and voles from Japan. Parasitol. Res. [Internet]. 2017; 116(8):2321–2325. doi: https://doi.org/gbqxr9
Lucas JR, Barrios–Arpi M, Rodríguez J, Balcázar–Nakamatsu S, Zarria J, Namiyama G, Taniwaki N, Gonzales–Viera O. Ultrastructural description of Sarcocystis sp. in cardiac muscle of naturally infected alpacas (Vicugna pacos). Iran. J. Parasitol. [Internet]. 2019; 14(1):174–179. doi: https://doi.org/g8w5f7
Decker Franco C, Wieser SN, Soria M, de Alba P, Florin–Christensen M, Schnittger L. In silico identification of immunotherapeutic and diagnostic targets in the glycosylphosphatidylinositol metabolism of the coccidian Sarcocystis aucheniae. Transbound. Emerg. Dis. [Internet]. 2020; 67(12):165–174. doi: https://doi.org/g8w5f8
Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). Datos hidrometeorológicos a nivel nacional 2021. Lima (Perú): Ministerio del Ambiente, SENAMHI; 2021. 23 p.
Ministerio de Desarrollo Agrario y Riego (MIDAGRI). Camélidos sudamericanos. Lima (Perú): Ministerio de Desarrollo Agrario y Riego; 2021. 22 p.
Proost K, Boone MN, Josipovic I, Pardon B, Chiers K, Vlaminck L. Clinical insights into the three–dimensional anatomy of cheek teeth in alpacas based on micro–computed tomography – Part 2: Maxillary cheek teeth. BMC Vet. Res. [Internet]. 2022; 18(1):6. doi: https://doi.org/g8w5f9
Daniel W. Bioestadística. Base para el análisis de las ciencias de la salud. 4ta. ed. México DF (México): Limusa; 2007. 924 p.
Wensley S, Betton V, Martin N, Tipton E. Advancing animal welfare and ethics in veterinary practice through a national pet wellbeing task force, practice–based champions and clinical audit. Vet. Rec. [Internet]. 2020; 187(8):316. doi: https://doi.org/grt554
Bayneet K, Turner PV. Animal welfare standards and international collaborations. Ilar J. [Internet]. 2019; 60(1):86–94. doi: https://doi.org/g8w5gb
Condori G, Ayala C, Renieri C, Gerken M, Antonini M, Quispe J. Determinación de la edad óptima de faeneo, calidad y características productivas de la carne de llama. RIIARn. [Internet]. 2018 [consultado 18 May. 2024]; 5(Especial):76–106. Disponible en: https://goo.su/fAG1vR
Song X, Bokkers EAM, van Mourik S, Groot Koerkamp PWG, van der Tol PPJ. Automated body condition scoring of dairy cows using 3–dimensional feature extraction from multiple body regions. J. Dairy Sci. [Internet]. 2019; 102(5):4294–4308. doi: https://doi.org/m6tq
Albornoz RI, Giri K, Hannah MC, Wales WJ. An improved approach to automated measurement of body condition score in dairy cows using a three–dimensional camera system. Animals [Internet]. 2021; 12(1):72. doi: https://doi.org/g8w5gc
Clarke LL, Breuer RM. Postmortem diagnoses in South American camelids and factors influencing diagnostic rate in the Upper Midwest USA, 2009–2019. J. Vet. Diagn. Invest. [Internet]. 2022; 34(4):727–732. doi: https://doi.org/g8w5gd
Condori–Quispe R, Loza–Murguía MG, Gutiérrez–Ramírez L, Condori–Condori C. Prevalencia de Sarcocystis spp. en musculo cardiaco de llamas (Lama glama) y alpacas (Vicugna pacos). J. Selva Andina Anim. Sci. [Internet] 2019; 6(2):39–46. doi: https://doi.org/g8w5gf
Moré G, Pantchev A, Skuballa J, Langenmayer MC, Maksimov P, Conraths FJ, Venturini MC, Schares G. Sarcocystis sinensis is the most prevalent thick–walled Sarcocystis species in beef on sale for consumers in Germany. Parasitol. Res. [Internet]. 2014; 113(6):2223–2230. doi: https://doi.org/g8w5gg
Zeng H, Van Damme I, Kabi TW, Šoba B, Gabriël S. Sarcocystis species in bovine carcasses from a Belgian abattoir: a cross–sectional study. Parasites Vectors [Internet]. 2021; 14(271). doi: https://doi.org/g8w5gh
Aceituno Huacani C, Silva Minauro R, Cruz Chuima R. Mitos y realidades de la investigación científica. Cusco (Perú): Alpha Servicios Gráficos; 2020; 114 p.
Gamarra Astuhuamán G, Wong Cabanillas F, Pujay Cristobal O, Rivera Espinoza TA. Estadística e Investigación con Aplicaciones de SPSS: Análisis de varianza con aplicativos de SPSS. 2da. ed. Lima (Perú): San Marcos; 2019. 352 p.
Rooney AL, Limon G, Vides H, Cortez A Guitian J. Sarcocystis spp. in llamas (Lama glama) in Southern Bolivia: a cross sectional study of the prevalence, risk factors and loss in income caused by carcass downgrades. Prev. Vet. Med. [Internet]. 2014; 116(3):296–304. doi: https://doi.org/f6j755
Velásquez L, Soncco J, Valderrama A. Sarcocystis aucheniae en camélidos sudamericanos y factores de riesgo en la provincia de Lucanas. Salud Tecnol. Vet. [Internet]. 2019; 7(1):8–13. doi: https://doi.org/g8w5gj
Wieser SN, Giuliano SM, Reategui Ordoñez J, Barriga Marcapura X, Olivera LVM, Chavez Fumagalli MA, Schnittger L, Florin–Christensen M. Sarcocystis spp. of New and Old–world camelids: ancient origin, present challenges. Pathogens [Internet]. 2024; 13(3):196. doi: https://doi.org/g8w5gk
Prakas P, Strazdaitė–Žielienė Ž, Januškevičius V, Chiesa F, Baranauskaitė A, Rudaitytė–Lukošienė E, Servienė E, Petkevičius S, Butkauskas D. Molecular identification of four Sarcocystis species in cattle from Lithuania, including S. hominis, and development of a rapid molecular detection method. Parasit. Vectors [Internet]. 2020; 13(1):610. doi: https://doi.org/g8w5gn
Gibson TJ, Whitehead C, Taylor R Sykes O, Chancellor NM, Limon G. Pathophysiology of penetrating captive bolt stunning in Alpacas (Vicugna pacos). Meat Sci. [Internet]. 2015; 100:227–231. doi: https://doi.org/g8w5gm

Copyright (c) 2024 Víctor Carhuapoma–Delacruz, Melanio Jurado–Escobar, Nicasio Valencia–Mamani, Manuel Castrejón Valdez, Víctor Guillermo Sánchez–Araujo, Arnaldo Virgilio Capcha–Huamaní, Blas Oscar Sánchez–Ramos, Mario Esparza

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.