Molecular study of some vector–borne diseases in cattle raised in western Türkiye

  • Semiha Yalçın Mugla Sitki Kocman University, Milas Faculty of Veterinary Medicine, Department of Preclinical Sciences, Department of Microbiology. Mugla, Türkiye
  • Neslihan Sürsal Şimşek Mugla Sitki Kocman University, Milas Faculty of Veterinary Medicine, Department of Preclinical Sciences, Department of Parasitology. Mugla, Türkiye
  • Seyda Cengiz Mugla Sitki Kocman University, Milas Faculty of Veterinary Medicine, Department of Preclinical Sciences, Department of Microbiology. Mugla, Türkiye
Keywords: Anaplasma spp., Babesia spp., Ehrlichia spp., Rickettsia spp., Theileria spp.

Abstract

Unfortunately, global warming, especially the global climate crisis, increases the rate of vector–borne infections. Among the causes of this infection are microorganisms in the Rickettsiales Order, which are Gram–negative and small coccobacillus microorganisms that can multiply within host cells and are dependent on their metabolism, in addition to bacterial infections, protozoa such as Babesia spp. and Theileria spp. are transmitted through vectors and cause serious diseases in animals. This study aimed to investigate the presence of some vector–borne bacterial and protozoan microorganisms in blood samples taken from cattle raised in Mugla province, located in the West of Türkiye, and to reveal relevant disease data for the region. In this study, blood samples taken from 100 cattle were examined using molecular methods. While Anaplasma phagocytophilum was detected in 15 blood samples (15%), Anaplasma ovis agent was detected in eight samples (8%). Anaplasma bovis agent (1%) was identified in only one blood sample. In the samples examined within the scope of the study, Ehrlichia and Rickettsia species from bacteria and Theileria spp. and Babesia spp. from parasitic agents could not be detected. Mugla province, located west of Türkiye, has a subtropical dry summer climate, so the probability of infections transmitted through arthropods is high. Since the agents are transmitted through ticks, conducting more studies on vector–borne diseases is essential. This includes mapping the region’s vector ticks and determining and evaluating the tick carrier and disease maps in cattle. The data obtained is thought to help create regional and national vector–borne disease maps.

Downloads

Download data is not yet available.

References

Ceylan O, Ma Z, Ceylan C, Culha MH, Galon EM, Ji S, Li H, Zafar I, Mohanta UK, Xuan X, Sevinc F. Wide bovine tick–borne pathogen spectrum: Predominancy of Theileria annulata and the first molecular detection of Ehrlichia minasensis in Turkey. Vet. Res. Commun. [Internet]. 2024; 48(2):1037–1059. doi: https://doi.org/g5rbvm

Xu J, Gu XL, Jiang ZZ, Cao XQ, Wang R, Peng QM, Li ZM, Zhang L, Zhou CM, Qin XR, Yu XJ. Pathogenic Rickettsia, Anaplasma, and Ehrlichia in Rhipicephalus microplus ticks collected from cattle and laboratory hatched tick larvae. PLOS Negl. Trop. Dis. [Internet]. 2023; 17(8):e0011546. doi: https://doi.org/g5rbvr

Diop A, El Karkouri K, Raoult D, Fournier PE. Genome sequence–based criteria for demarcation and definition of species in the genus Rickettsia. Int. J. Syst. Evol. Microbiol. [Internet]. 2020; 70(3):1738–1750. doi: https://doi.org/g5rbvv

Lu M, Tian J, Wang W, Zhao H, Jiang H, Han J, Guo W, Li K. High diversity of Rickettsia spp., Anaplasma spp., and Ehrlichia spp. in ticks from Yunnan Province, Southwest China. Front. Microbiol. [Internet]. 2022; 13:1008110. doi: https://doi.org/g5rbvw

Osorio M, Miranda J, Gonzalez M, Mattar S. Anaplasma sp., Ehrlichia sp., and Rickettsia sp. in ticks: a high risk for public health in Ibagué, Colombia. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2018; 24(4):557–562. doi: https://doi.org/g5rbvx

Soosaraei M, Haghi MM, Etemadifar F, Fakhar M, Teshnizi SH, Asfaram S, Esboei BR. Status of Anaplasma spp. infection in domestic ruminants from Iran: A systematic review with meta–analysis. Parasite Epidemiol. Cont. [Internet]. 2020; 11:e00173. doi: https://doi.org/g5rbvz

Vidotto MC, Kano SF, Gregori F, Headley SA, Vidotto O. Phylogenetic analysis of Anaplasma marginale strains from Paraná State, Brazil, using the msp1α and msp4 genes. J. Vet. Med. Ser. B. [Internet]. 2006; 53(9):404–411. doi: https://doi.org/bnfvnf

Dahmani M, Davoust B, Benterki MS, Fenollar F, Raoult D, Mediannikov O. Development of a new PCR–based assay to detect Anaplasmataceae and the first report of Anaplasma phagocytophilum and Anaplasma platys in cattle from Algeria. Comp. Immunol. Microbiol. Infect. Dis. [Internet]. 2015; 39:39–45. doi: https://doi.org/f68jg5

Park J, Han DG, Ryu JH, Chae JB, Chae JS, Yu DH, Park BK, Kim HC, Choi KS. Molecular detection of Anaplasma bovis in Holstein cattle in the Republic of Korea. Acta Vet. Scand. [Internet]. 2018; 60:1–5. doi: https://doi.org/g5rbv4

Peter SG, Aboge GO, Kariuki HW, Kanduma EG, Gakuya DW, Maingi N, Mulei CM, Mainga AO. Molecular prevalence of emerging Anaplasma and Ehrlichia pathogens in apparently healthy dairy cattle in peri–urban Nairobi, Kenya. BMC Vet. Res. [Internet]. 2020; 16:364. doi: https://doi.org/g5rbv5

Dumler JS. Anaplasma and Ehrlichia Infection. Ann. N.Y. Acad. Sci. [Internet]. 2005; 1063(1):361–373. doi: https://doi.org/c6vrnc

Basit MA, Ijaz M, Khan JA, Ashraf K, Abbas RZ. Molecular evidence and hematological profile of bovines naturally ınfected with ehrlichiosis in southern Punjab, Pakistan. Acta Parasit. [Internet]. 2022; 67(1):72–78. doi: https://doi.org/g5rbv9

Peter SG. Zoonotic Anaplasma and Ehrlichia infections and their potential reservoirs: A review. Int. J. Vet. Sci. [Internet]. 2020 [cited 25 Apr. 2024]; 9(1):1–9. Available in: https://goo.su/BcWQwM

Adjadj NR, Cargnel M, Ribbens S, Quinet C, Malandrin L, Mignon B, Mori M. Prevalence of Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Rickettsia spp. and Babesia spp. in cattle serum and questing ticks from Belgium. Ticks Tick–borne Dis. [Internet]. 2023; 14(4):102146. doi: https://doi.org/gr4nd6

Barradas PF, Mesquita JR, Ferreira P, Gärtner F, Carvalho M, Inácio E, Chivinda E, Katimba A, Amorim I. Molecular identification and characterization of Rickettsia spp. and other tick–borne pathogens in cattle and their ticks from Huambo, Angola. Ticks Tick–borne Dis. [Internet]. 2021; 12(1):101583. doi: https://doi.org/g5rbwb

Kim HK. Rickettsia–host–tick Interactions: Knowledge advances and gaps. Infect. Immun. [Internet]. 2022; 90:e00621–21. doi: https://doi.org/g5rbwc

Merino O, Almazan C, Canales M, Villar M, Moreno–Cid JA, Galindo RC, de la Fuente J. Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine. [Internet]. 2011; 29(47):8575–8579. doi: https://doi.org/dvg4xq

Gosh S, Azhahianambi P, Yadav MP. Upcoming and future strategies of tick control: a review. J. Vector Borne Dis. [Internet] 2007 [cited 24 Apr. 2024]; 44(2):79–89. PMID: 17722860. Available in: https://goo.su/rOI52

Homer MJ, Aguilar–Delfin I, Telford III SR, Krause PJ, Persing DH. Babesiosis. Clin. Microbiol. Rev. [Internet]. 2000; 13(3):451–469. doi: https://doi.org/gqjng2

Schnittger L, Rodriguez AE, Florin–Christensen M, Morrison DA. Babesia: a world emerging. Infect. Genet. Evol. [Internet]. 2012; 12(8):1788–1809. doi: https://doi.org/f22qns

Altay K, Aydin MF, Dumanli N, Aktas M. Molecular detection of Theileria and Babesia infections in cattle. Vet Parasit. [Internet]. 2008; 158(4):295–301. doi: https://doi.org/bftwc8

Inci A, Çakmak A, Karaer Z, Dinçer S, Sayin F, Iça A. Kayseri yöresinde sığırlarda babesiosis in seroprevalansı [Seroprevalence of bovine babesiosis around Kayseri]. Turk. J. Vet. Anim. Sci. [Internet]. 2002 [cited 29 Apr. 2024]; 26(6):1345–1350. Turkish. Available in: https://goo.su/RW3H

Kar S, Güven E, Karaer Z. Ankara’da Şubat ayında Babesiosis olgusu [A Babesiosis Case in February in Ankara]. Turkiye Parazitol. Derg. [Internet]. 2008 [cited 05 May 2024]; 32(4):379–381. Turkish. Available in: https://goo.su/6uORBzF

Bishop R, Musoke A, Morzaria S, Gardner M, Nene V. Theileria: Intracellular protozoan parasites of wild and domestic ruminants transmitted by ixodid ticks. Parasitology. [Internet]. 2004; 129(1):271–283. doi: https://doi.org/ck8qks

Levine ND. Veterinary Protozoology. Ames (Iowa, USA): Iowa State University Press; 1985. Chapter 9, Apicomplexa: The Piroplasms. p. 291–328.

Taylor MA, Coop RL, Wall RL, editors. Veterinary Parasitology. 4th ed. Hoboken (New Jersey, USA): John Wiley & Sons, Inc; 2015. 1032 p.

Bell–Sakyi L, Palomar AM, Bradford EL, Shkap V. Propagation of the Israeli vaccine strain of Anaplasma centrale in tick cell lines. Vet. Microbiol. [Internet]. 2015; 179(3–4):270–276. doi: https://doi.org/f7p2vg

Pérez Pérez JC, Montoya Ruiz C, Arroyave Sierra E, Paternina LE, Rodas JD. Design and analytical validation of a duplex PCR for Ehrlichia and Rickettsia detection in ticks. Rev. Colomb. Cienc. Pec. [Internet]. 2018; 31(4):285–294. doi: https://doi.org/g5rbwj

Peng Y, Zhao S, Wang K, Song J, Yan Y, Zhou Y, Shi K, Jian F, Wang R, Zhang L, Ning C. A multiplex PCR detection assay for the identification of clinically relevant Anaplasma species in field blood samples. Front Microbiol. [Internet]. 2020; 11:606. doi: https://doi.org/g5rbwm

Gubbels JM, De Vos AP, Van der Weide M, Viseras J, Schouls LM, De Vries E, Jongejan F. Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J. Clin. Microbiol. [Internet]. 1999; 37(6):1782–1789. doi: https://doi.org/gg88dt

Shrivastava P, Dehuri M, Mohanty B, Mishra C, Venkatesh KM, Biswal SS. Molecular characterization and prevalence of bovine hemoprotozoan and rickettsial organism from Bhubaneswar, Eastern India. Anim. Biotechnol. [Internet]. 2023; 34(7):2917–2927. doi: https://doi.org/g5rbwn

Kaur R, Yadav A, Rafiqi SI, Godara R, Sudan V, Chakraborty D, Katoch R. Epidemiology, haematology and molecular characterization of haemoprotozoon and rickettsial organisms causing infections in cattle of Jammu region, North India. BMC Vet. Res. [Internet]. 2021; 17:219. doi: https://doi.org/g5rbwq

Aubry P, Geale DW. A review of bovine anaplasmosis. Transbound. Emerg. Dis. [Internet]. 2011; 58(1):1–30. doi: https://doi.org/bpsfgv

Parvizi O, El–Adawy H, Melzer F, Roesler U, Neubauer H, Mertens–Scholz K. Seroprevalence and molecular detection of bovine anaplasmosis in Egypt. Pathogens [Internet]. 2020; 9(1):64. doi: https://doi.org/g5rbwr

Spare MR, Hanzlicek GA, Wootten KL, Anderson GA, Thomson DU, Sanderson MW, Ganta RR, Reif KE, Raghavan RK. Bovine anaplasmosis herd prevalence and management practices as risk–factors associated with herd disease status. Vet. Parasitol. [Internet]. 2020; 277:100021. doi: https://doi.org/g5rbws

Ceylan O, Xuan X, Sevinc F. Primary tick–borne protozoan and Rickettsial infections of animals in Turkey. Pathogens [Internet]. 2021; 10(2):231. doi: https://doi.org/g5rbwt

Sevinç F, Xuan X. Major tick–borne parasitic diseases of animals: A frame of references in Turkey. Eurasian J. Vet. Sci. [Internet]. 2015; 31(3):132–142. doi: https://doi.org/g5rbww

Altay K, Erol U, Sahin OF, Aytmirzakizi A. First molecular detection of Anaplasma species in cattle from Kyrgyzstan; molecular identification of human pathogenic novel genotype Anaplasma capra and Anaplasma phagocytophilum related strain. Ticks Tick–borne Dis. [Internet]. 2022; 13(1):101861. doi: https://doi.org/g5rbwx

Seerintra T, Saraphol B, Thanchomnang T, Piratae S. Molecular prevalence of Anaplasma spp. in cattle and assessment of associated risk factors in Northeast Thailand. Vet World. [Internet]. 2023; 16(8):1702–1707. doi: https://doi.org/g5rbw2

Yan Y, Jiang Y, Tao D, Zhao A, Qi M, Ning C. Molecular detection of Anaplasma spp. in dairy cattle in southern Xinjiang, China. Vet. Parasitol. Reg. Stud. Reports [Internet]. 2020; 20:100406. doi: https://doi.org/g5rbw5

Aktas M, Ozübek S. Bovine anaplasmosis in Turkey: First laboratory confirmed clinical cases caused by Anaplasma phagocytophilum. Vet. Microbiol. [Internet]. 2015; 178(3–4):246–251. doi: https://doi.org/f7hcbg

Aktas M, Altay K, Dumanli N. Molecular detection and identification of Anaplasma and Ehrlichia species in cattle from Turkey. Ticks Tick–borne Dis. [Internet]. 2011; 2(1):62–65. doi: https://doi.org/fkrb5g

Aktas M, Çolak S. Molecular detection and phylogeny of Anaplasma spp. in cattle reveals the presence of novel strains closely related to A. phagocytophilum in Turkey. Ticks Tick–borne Dis. [Internet]. 2021; 12(1):101604. doi: https://doi.org/g5rbw8

Bilgic HB, Bakırcı S, Kose O, Unlu AH, Hacılarlıoglu S, Eren H, Weir W, Karagenc, T. Prevalence of tick–borne haemoparasites in small ruminants in Turkey and diagnostic sensitivity of single–PCR and RLB. Parasit. Vectors. [Internet]. 2017; 10:211. doi: https://doi.org/g5rbw9

Ceylan O, Uslu A, Ozturk O, Sevinc F. Serological investigation of some vector–borne parasitic and rickettsial agents in dogs in the western part of Turkey. Pak. Vet. J. [Internet]. 2021 [cited 25 Apr. 2024]; 41(3):386–392. Available in: https://goo.su/prRgxq

Haydardedeoğlu AE, Büyükleblebici O, Aksoy NH, Karaşahin T. Aksaray Malaklısı Çoban Köpeklerinde Ehrlichia Canis, Anaplasma Phagocytophilum, Borrelia Burgdorferi, Dirofilara immitis Enfeksiyonlarının Anlık Dağılımının Belirlenerek Hematolojik Bulguların Araştırılması [Investigation of hematological findings by determining the spatial distribution of infections of Ehrlichia canis, Anaplasma phagocytophilum, Borrelia burgdorferi, Dirofilaria immitis in Aksaray Malakli Dogs]. Harran Üniv. Vet. Fak. Derg. [Internet]. 2019; 8(1):38–43. Turkish. doi: https://doi.org/g5rbxc

Ural K, Gultekin M, Atasoy A, Ulutas B. Spatial distribution of vector borne disease agents in dogs in Aegean region, Turkey. Revista MVZ Córdoba. [Internet]. 2014; 19(2):4086–4098. doi: https://doi.org/g5rbxf

Hoşgör M, Bilgiç HB, Bakırcı S, Ünlü AH, Karagenç T, Eren H. Detection of Anaplasma/Ehrlichia species of cattle and ticks in Aydın region. Turk. Parazitol. Derg. [Internet]. 2015; 39(4):291–298. doi: https://doi.org/g4ntd3

Mohammadian B, Noaman V, Emami SJ. Molecular survey on prevalence and risk factors of Anaplasma spp. infection in cattle and sheep in West of Iran. Trop. Anim. Health Prod. [Internet]. 2021; 53(2):266. doi: https://doi.org/g5rbxj

Aktas M, Ozubek S. Molecular and parasitological survey of bovine piroplasms in the Black Sea region, ıncluding the first report of babesiosis associated with Babesia divergens in Turkey. J. Med. Entomol. [Internet]. 2015; 52(6):1344–1350. doi: https://doi.org/f72c9m

Altay K, Atas AD, Ograk YZ, Ozkan E. Survey of Theileria, Babesia and Anaplasma infections of cattle and ticks from Sivas region of Turkey. Erciyes Univ. Vet. Fak. Derg. [Internet]. 2020; 17(1):32–38. doi: https://doi.org/g5rbxm

Yavuz A, Inci A, Düzlü Ö, Bişkin Z, Yildirim A. Babesia bovis’in msa–2c Geninin Moleküler Karakterizasyonu [Molecular characterization of babesia bovis msa–2c gene]. Turkiye Parazitol. Derg. [Internet]. 2011; 35(3):140–144. Turkish. doi: https://doi.org/bv5cjj

Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet. Parasit. [Internet]. 2010; 167(2–4):108–122. doi: https://doi.org/fqcxwm

Ji S, Ceylan O, Ma Z, Galon EM, Zafar I, Li H, Hasegawa Y, Sevinc M, Masatani T, Iguchi A, Kawase O, Umemiya–Shirafuji R, Asada M, Sevinc F, Xuan X. Protozoan and rickettsial pathogens in ticks collected from infested cattle from Turkey. Pathogens [Internet]. 2022; 11(5):500. doi: https://doi.org/g5rbxq

Ceylan O, Ma Z, Ceylan C, Culha MH, Galon EM, Ji S, Li H, Zafar I, Mohanta UK, Xuan X, Sevinc F. Wide bovine tick–borne pathogen spectrum: Predominancy of Theileria annulata and the first molecular detection of Ehrlichia minasensis in Turkey. Vet. Res. Commun. [Internet]. 2024; 48(2):1037–1059. doi: https://doi.org/g5rbvm

Bakirci S, Sarali H, Aydin L, Eren H, Karagenc T. Distribution and seasonal activity of tick species on cattle in the West Aegean region of Turkey. Exp. Appl. Acarol. [Internet]. 2012; 56(2):165–178. doi: https://doi.org/crz99j

Henker LC, Lorenzett MP, Fagundes–Moreira R, Dalto AGC, Sonne L, Driemeier D, Soares JF, Pavarini SP. Bovine abortion, stillbirth and neonatal death associated with Babesia bovis and Anaplasma sp. infections in southern Brazil. Ticks Tick–borne Dis. [Internet]. 2020; 11(4):101443. doi: https://doi.org/jzcz

Aktas M, Altay K, Ozubek S, Dumanli N. A survey of ixodid ticks feeding on cattle and prevalence of tick–borne pathogens in the Black Sea region of Turkey. Vet. Parasitol. [Internet]. 2012; 187(3–4):567–571. doi: https://doi.org/f32t7p

Published
2024-10-07
How to Cite
1.
Yalçın S, Sürsal Şimşek N, Cengiz S. Molecular study of some vector–borne diseases in cattle raised in western Türkiye. Rev. Cient. FCV-LUZ [Internet]. 2024Oct.7 [cited 2024Oct.20];34(3):7. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/42819
Section
Veterinary Medicine