Immunohistochemical expression of MMP–2 and MMP–9 in the brain tissue of sheep naturally infected with Listeria monocytogenes and relationship with cell death in the Listerial encephalitis

  • Mehmet Önder Karayigit Cukurova University, Faculty of Ceyhan Veterinary Medicine, Pathology Department. Adana, Türkiye
  • Mehmet Halıgür Cukurova University, Faculty of Ceyhan Veterinary Medicine, Pathology Department. Adana, Türkiye
  • Mehmet Ekici Cumhuriyet University, Faculty of Veterinary Medicine, Physiology Department. Sivas, Türkiye
Keywords: Immunohistochemistry, Listeria monocytogenes, MMP–2, MMP–9, TUNEL

Abstract

Listeria monocytogenes is an intracellular, food–borne bacterium. Silage is an important source of this pathogen causing listeriosis. Listeriosis is an important health problem for both animals and humans in the world. The disease comprises three clinical syndromes: meningoencephalitis, septicemia and metritis with abortion. Encephalitis is frequently observed and the factors that play a role in its pathogenesis are the subject of research. In this study, the immunohistochemical expression of MMP–2 and MMP–9 together with TUNEL staining was investigated in the pathogenesis of meningoencephalitis in sheep naturally infected with L. monocytogenes. The brains of 25 sheep with Listerial meningoencephalitis were used in this study. Brain material from 10 sheep provided from the slaughterhouse was also used as a control. Tissue sections were stained immunohistochemically with L. monocytogenes, MMP–2 and MMP–9 antibodies. Additionally, TUNEL staining was performed to determine apoptosis in the disease. As a result of the study, it was observed that TUNEL staining in neurons and glial cells, MMP–2 and MMP–9 expressions in vascular endothelial cells, inflammatory cells, microglia and especially neurons in the infected brain tissue were significantly increased compared to controls. These results suggested that MMP–2 and MMP–9 play an active role in the neurodegeneration and cell death that occur in Listerial encephalitis.

Downloads

Download data is not yet available.

References

Lecuit M. Listeria monocytogenes, a model in infection biology. Cell. Microbiol. [Internet]. 2020; 22(4):e13186. doi: https://doi.org/gnbsrg

Walter FS. Epidemiology and Clinical Manifestations of Listeria monocytogenes Infection. Microbiol. Spectr. [Internet]. 2019; 7(3)1–12. https://doi.org/gnbsq9

Cardenas–Alvarez MX, Zeng H, Webb BT, Mani R, Muñoz M, Bergholz TM. Comparative Genomics of Listeria monocytogenes isolates from ruminant Listeriosis cases in the Midwest United States. Microbiol. Spectr. [Internet]. 2022; 10(6):e0157922. doi: https://doi.org/gvjnhw

Liu Z. Listeriosis in a goat herd. Can. Vet. J. [Internet]. 2023 [cited 20 Feb. 2024]; 64(6):595–597. PMID: 37265813. Available in: https://goo.su/mFlV4

Karayiğit MÖ. Nitric oxide synthase expression in naturally ınfected sheep brain with Listeria monocytogenes and relationship with cell death. Acta Sci. Vet. [Internet]. 2018; 46(1617):1–7. doi: https://doi.org/nhjv

Haligur M, Aydogan A, Ozmen O, Ipek V. Immunohistochemical

evaluation of natural cases of encephalitic Listeriosis in lambs. Biotech. Histochem. [Internet]. 2019; 94(5):341–347. doi: https://doi.org/gkj574

Karayigit MO, Dincel GC. Role of ADAMTS–13 and nNOS expression in neuropathogenesis of Listerial encephalitis of small ruminants. Biotech. Histochem. [Internet]. 2020; 95(8):584–596. doi: https://doi.org/gvjnhx

Shamseddin A, Crauste C, Durand E, Villeneuve P, Dubois G, Pavlickova T, Durand T, Vercauteren J, Veas F. Resveratrol–Linoleate protects from exacerbated endothelial permeability via a drastic inhibition of the MMP–9 activity. Biosci. Rep. [Internet]. 2018; 38(4):BSR20171712. doi: https://doi.org/gdzh98

Hannocks MJ, Zhang X, Gerwien H, Chashchina A, Burmeister M, Korpos E, Song J, Sorokin L. The gelatinases, MMP–2 and MMP–9, as fine tuners of neuroinflammatory processes. Matrix Biol. [Internet]. 2019; 75–76:102–113. doi: https://doi.org/gp3bms

Younis NS, Mohamed ME. Anethole Pretreatment Modulates Cerebral Ischemia/Reperfusion: The Role of JNK, p38, MMP–2 and MMP–9 Pathways. Pharmaceuticals [Internet]. 2023; 16(3):442. doi: https://doi.org/gvjnh3

Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, Andersson PB, Stabler G, Miller K. Serum MMP–9 and TIMP–1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology [Internet]. 1999; 53(7):1397–1401. doi: https://doi.org/gvjnh4

Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci. [Internet]. 2001; 2:502–511. doi: https://doi.org/d4f37m

Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res. [Internet]. 2014; 355:687–699. doi: https://doi.org/f5xnkx

Wang H, Huang L, Wu L, Lan J, Feng X, Li P, Peng Y. The MMP–2/TIMP–2 System in Alzheimer Disease. CNS Neurol. Disord. Drug Targets [Internet]. 2020; 19(6):402–416. doi: https://doi.org/gvjnh6

Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA. Up–regulation of MMP–2 and MMP–9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, Doxycycline. Eur. J. Vasc. Endovasc. Surg. [Internet]. 2002; 23(3):260–269. doi: https://doi.org/dr6cz8

Dong M, Liu R, Guo L, Li C, Tan G. Pathological findings in rats with experimental allergic encephalomyelitis. APMIS. [Internet]. 2008; 116(11):972–984. doi: https://doi.org/ffs4qf

İlhan F, Ulusoy Y, Halıgür M. Matrix metalloproteinase expression in sheep with Listerial meningoencephalitis. Res. Vet. Sci. [Internet]. 2012; 92(2):269–272. doi: https://doi.org/crnz8f

Bojarski C, Weiske J, Schöneberg T, Schröder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O. The specific fates of tight junction proteins in apoptotic epithelial cells. J. Cell Sci. [Internet]. 2004. 117(10):2097–2107. doi: https://doi.org/djr4f9

Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. [Internet]. 2007; 35(4):495–516. doi: https://doi.org/b5hgfz

Luna LG, editor. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. New York: Mc Graw–Hill. 1968. 258 p.

Nagibina MV, Vengerov YY, Tishkevich OA, Smirnova TY, Baikova LB, Svistunova TS, Ryzhov GE, Matosova SV, Tsvetkova NA, Sadykova VD. Листериоз центральной нервной системы [Listeriosis of the Central nervous system]. Terapevticheskii arkhiv. [Internet]. 2019; 91(11):38–44. Russian. doi: https://doi.org/gvjnh8

Boully A, Casenaz A, Blot M, Piroth L, Thai M, Zanetta G, Blanchot T, Sixt T. A brain problem with Listeria monocytogenes. Lancet Infect. Dis. [Internet]. 2022; 22(2):296. doi: https://doi.org/gpbh8m

Zhang C, Yi Z. Brain abscess caused by Listeria monocytogenes: a case report and literature review. Ann. Palliat. Med. [Internet]. 2022; 11(10):3356–3360. doi: https://doi.org/gvjnh9

Liu W, Furuichi T, Miyake M, Rosenberg GA, Liu KJ. Differential expression of tissue inhibitor of metalloproteinases–3 in cultured astrocytes and neurons regulates the activation of matrix metalloproteinase–2. J. Neurosci. Res. [Internet]. 2007; 85(4):829–836. doi: https://doi.org/ccdcmp

Zeng G, Ding W, Li Y, Sun M, Deng L. Morroniside protects against cerebral ischemia/reperfusion injury by inhibiting neuron apoptosis and MMP2/9 expression. Exp. Ther. Med. [Internet]. 2018; 16(3):2229–2234. doi: https://doi.org/gd6mhb

Ji Y, Huang W, Chen Y, Zhang X, Wu F, Tang W, Lu Z, Huang C. Inhibition of MMP–2 and MMP–9 attenuates surgery–induced cognitive impairment in aged mice. Brain Res. Bull. [Internet]. 2023; 204:110810. doi: https://doi.org/nhp9

Spindler KR, Hsu TH. Viral disruption of the blood–brain barrier. Trends. Microbiol. [Internet]. 2012; 20(6):282–290. doi: https://doi.org/f3z2jb

Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E, Singh S, Mogilicherla K, Palli SR . Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. [Internet]. 2016; 13(7):656–669. doi: https://doi.org/gmp2x9

Edgar JM, Nave KA. The role of CNS glia in preserving axon function. Curr. Opin. Neurobiol. [Internet]. 2009; 19(5):498–504. doi: https://doi.org/fpw5rn

Nakaguchi K, Masuda H, Kaneko N, Sawamoto K. Strategies for regenerating striatal neurons in the adult brain by using endogenous neural stem cells. Neurol. Res. Int. [Internet]. 2011; 898012. doi: https://doi.org/b9t997

Hofer S, Grandgirard D, Burri D, Fröhlich TK, Leib SL. Bacterial meningitis impairs hippocampal neurogenesis. J. Neuropathol. Exp. Neurol. [Internet]. 2011; 70(10):890–899. https://doi.org/b3pfpg

Parthasarathy G, Philip MT. Review. apoptotic mechanisms in bacterial infections of the central nervous system. Front. Immunol. [Internet]. 2012; 3(306):1–13. doi: https://doi.org/nhqd

Svedin P, Hagberk H, Sävman K, Zhu C, Mallard C. Matrix metalloproteinase–9 gene knock–out protects the immature brain after cerebral hypoxia–ischemia. J. Neurosci. [Internet]. 2007; 27(7):1511–1518. doi: https://doi.org/fv7c4x

Engelhardt S, Patkar S, Ogunshola OO. Cell–specific blood–brain barrier regulation in health and disease: a focus on hypoxia. Br. J. Pharmacol. [Internet]. 2014; 171(5):1210–1230. doi: https://doi.org/f5zq45

Published
2024-09-19
How to Cite
1.
Karayigit M Önder, Halıgür M, Ekici M. Immunohistochemical expression of MMP–2 and MMP–9 in the brain tissue of sheep naturally infected with Listeria monocytogenes and relationship with cell death in the Listerial encephalitis. Rev. Cient. FCV-LUZ [Internet]. 2024Sep.19 [cited 2024Oct.20];34(3):9. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/42767
Section
Veterinary Medicine