Evaluation of the effect of local Bovine Amniotic Fluid on Osseointegration of Titanium Implants: A Histologic and Histomorphometric Study

  • Ozmen Istek Mus Alparslan University, Faculty of Health Science, Department of Nursing. Mus, Türkiye
  • Murat Tanrisever Firat University, Faculty of Veterinary Medicine, Department of Surgery, Elazig, Türkiye
  • Melek Atille Aydin Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Türkiye
  • Pınar Pak Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Türkiye
  • Hatice Eroksuz Firat University, Faculty of Veterinary Medicine, Department of Pathology. Elazig, Türkiye
  • Burak Karabulut Firat University, Faculty of Veterinary Medicine, Department of Pathology. Elazig, Türkiye
  • Elif Ekinci Dicle University, Faculty of Veterinary Medicine, Department of Pathology. Diyarbakir, Türkiye
  • Serkan Dundar Firat University, Faculty of Dentistry, Department of Periodontology, Elazig, Türkiye
Keywords: Bovine amniotic fluid, titanium implant, osseointegration, bone implant connection, bone implant contact

Abstract

The aim of this study was to histologically and histomorphometrically investigate the effect of locally applied bovine amniotic fluid (BAF) on osseointegration levels in implants. Adult female Sprague–Dawley rats weighing 300–350 g were used as subjects. The rats were divided into two groups: the sham–operated control group (n=10) and the local BAF group (n=10). Implant cavities were created in the tibias of all subjects under sterile saline cooling with rotating instruments. Local BAF was applied to all implant sockets before the implants were placed. Rats were sacrificed after a four–week osseointegration period. Histological staining was performed using hematoxylin and eosin staining to analyze the osseointegration. Examinations of the bone implant connection (BIC) and peri–implant bone formation (PBF) were performed using a light microscope and an image analyzer. As a result of the analysis, the mean BIC value was 40.3 ± 4.9 for the sham–operated control group and 45.2 ± 7.7 for the local BAF group. The mean PBF was 39.9 ± 6.3 for the sham control group and 40.5 ± 5.7 for the local BAF group. A statistically significant difference was found between the sham control group and the local BAF group for the BIC and PBF values (P>0.05; P: 0.11; P: 0.83). The application of local BAF to the implant socket did not have a clear positive effect on implant osseointegration. More studies are needed to clarify the association between local BAF and osseointegration.

Downloads

Download data is not yet available.

References

Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod. Biomed. Online. [Internet]. 2009; 18(Suppl. 1):17–27. doi: https://doi.org/ckq69z

Abbasian B, Kazemini H, Esmaeili A, Adibi S. Effect of bovine amniotic fluid on intra–abdominal adhesion in diabetic male rats. J. Diabetes Complicat. [Internet]. 2011; 25(1):39–43. doi: https://doi.org/bp8qns

Jain M, Singh N, Fatima R, Nachanekar A, Pradhan M, Nityanand S, Chaturvedi CP. Amniotic Fluid Mesenchymal Stromal Cells Derived from Fetuses with Isolated Cardiac Defects Exhibit Decreased Proliferation and Cardiomyogenic Potential. Biology [Internet]. 2023; 12(4):552. doi: https://doi.org/gtj9xz

Tanrisever M, Eröksüz H, Bulut S. The comparison of the effects of intraarticular injections of bovine amniotic fluid and hyaluronic acid on cartilage tissue in an experimental osteoarthritic rabbit model: Histopathological and immunohistochemical results. Turkish J. Vet. Anim. Sci. [Internet]. 2017; 41(2):273–281. doi: https://doi.org/mhsj

Rodrigues M, Blattner C, Stuppia L. Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int. J. Mol. Sci. [Internet]. 2019; 20(9):2236. doi: https://doi.org/mhsd

Hui L, Bianchi DW. Cell–free fetal nucleic acids in amniotic fluid. Hum. Reprod Update [Internet]. 2011; 17(3):362–371. doi: https://doi.org/cxzss4

Ireland JJ, Roberts RM, Palmer GH, Bauman DE, Bazer FW. A commentary on domestic animals as dual–purpose models that benefit agricultural and biomedical research. J. Anim. Sci. [Internet]. 2008; 86(10):2797–2805. doi: https://doi.org/d52fsq

Roth JA, Tuggle CK. Livestock models in translational medicine. ILAR J. [Internet]. 2015; 56(1):1–6. doi: https://doi.org/f7frmf

Rossi B, Merlo B, Colleoni S, Iacono E, Tazzari PL, Ricci F, Lazzarri G,Galli C. Isolation and in vitro Characterization of Bovine Amniotic Fluid Derived Stem Cells at Different Trimesters of Pregnancy. Stem. Cell. Rev. Rep. [Internet]. 2014;10:712–724. doi: https://doi.org/m858

Bozoglan A, Dundar S. Comparison of osseointegration of Ti–Al6V4 and Ti–Al6Nb7 implants: An experimental study. J. Oral Biol. Craniofac. Res. [Internet]. 2021; 11(4):624–627. doi: https://doi.org/gt4wz3

Schwartz–Arad D, Kidron N, Dolev E. A Long–Term Study of Implants Supporting Overdentures as a Model for Implant Success. J Periodontol. [Internet]. 2005; 76(9):1431–1435. doi: https://doi.org/dtzz34

Lindquist LW, Carlsson GE, Jemt T. A prospective 15–year follow–up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin. Oral Implant. Res. [Internet]. 1996; 7(4):329–336. doi: https://doi.org/dpcdg8

Chen X, Zhou XC, Liu S, Wu RF, Aparicio C, Wu JY. In vivo osseointegration of dental implants with an antimicrobial peptide coating. J. Mater. Sci. Mater. Med. [Internet]. 2017; 28(76). doi: https://doi.org/gpxtz3

Gehrke SA, Aramburú Júnior J, Pérez–Díaz L, do Prado TD, Dedavid BA, Mazon P, De Aza PN. Can changes in implant macrogeometry accelerate the osseointegration process?: An in vivo experimental biomechanical and histological evaluations. PLoS One. [Internet]. 2020;15(5):e0233304. doi: https://doi.org/gt4wz4

Kellesarian SV, Yunker M, Ramakrishnaiah R, Malmstrom H, Kellesarian TV, Ros Malignaggi VR, Javed F. Does incorporating zinc in titanium implant surfaces influence osseointegration? A systematic review. J. Prosthet. Dent. [Internet]. 2017; 117(1):41–47. doi: https://doi.org/f9mg6t

Yi M, Yin Y, Sun J, Wang Z, Tang Q, Yang C. Hormone and implant osseointegration: Elaboration of the relationship among function, preclinical, and clinical practice. Front. Mol. Biosci. [Internet]. 2022; 9:965753. doi: https://doi.org/gr6w5s

Guardia J, Gómez–Moreno G, Ferrera MJ, Cutando A. Evaluation of effects of topic melatonin on implant surface at 5 and 8 weeks in beagle dogs. Clin. Implant. Dent. Relat. Res. [Internet]. 2011; 13(4):262–268. doi: https://doi.org/d9xt5j

Kuntjoro M, Hendrijantini N, Prasetyo EP, Legowo D, Sitalaksmi RM, Agustono B Ari MDA, Hong G. Human umbilical cord mesenchymal stem cells accelerate and increase implant osseointegration in diabetic rats. J. Appl. Oral Sci. [Internet]. 2023; 31:e20220375. doi: https://doi.org/m859

Yu M, Zhou W, Song Y, Yu F, Li D, Na S, Zou G, Zhai M, Xie C. Development of mesenchymal stem cell–implant complexes by cultured cells sheet enhances osseointegration in type 2 diabetic rat model. Bone [Internet]. 2011; 49(3):387–394. doi: https://doi.org/fcjftz

Bulmus O, Dundar S, Bozoglan A, Canpolat S. Evaluation of the Effects of Systemic Irisin Hormone Application on Osseointegration of Titanium Implants: An Experimental Study. J. Craniofac. Surg. [Internet]. 2022; 33(4):e402–e405. doi: https://doi.org/gr6w6s

Javed F, Al Amri MD, Kellesarian SV, Al–Askar M, Al–Kheraif AA, Romanos GE. Laminin coatings on implant surfaces promote osseointegration: Fact or fiction? Arch. Oral Biol. [Internet]. 2016; 68:153–161. doi: https://doi.org/f8vnwg

Feng Y, Wu D, Knaus J, Keßler S, Ni B, Chen Z, Avaro J, Xiong R, Cölfen H, Wang Z. A Bioinspired Gelatin–Amorphous Calcium Phosphate Coating on Titanium Implant for Bone Regeneration. Adv. Healthc. Mater. [Internet]. 2023; 12(20):e2203411. doi: https://doi.org/gt4wz5

Ravelich SR, Breier BH, Reddy S, Keelan JA, Wells DN, Peterson AJ, Lee RSF. Insulin–Like Growth Factor–I and Binding Proteins 1, 2, and 3 in Bovine Nuclear Transfer Pregnancies. Biol. Reprod. [Internet]. 2004; 70(2):430–438. doi: https://doi.org/cdszx4

Cheng X, Chen S, Yu X, Zheng P, Wang H. BMP15 gene is activated during human amniotic fluid stem cell differentiation into oocyte–like cells. DNA Cell Biol. [Internet]. 2012; 31(7):1198–1204. doi: https://doi.org/f34vx5

Sun H, Feng K, Hu J, Soker S, Atala A, Ma PX. Osteogenic differentiation of human amniotic fluid–derived stem cells induced by bone morphogenetic protein–7 and enhanced by nanofibrous scaffolds. Biomaterials. [Internet]. 2010; 31(6):1133–1139. doi: https://doi.org/d7kvjw

Istek O, Tanrisever M, Eroksuz H, Karabulut B, Ozcan EC, Bingul MB, Guler R, Dundar S. The Histopathological Evaluation of Effects of Application of the Bovine Amniotic Fluid with Graft on Peri–Implant Bone Regeneration. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2023; 29(5):551–556. doi: https://doi.org/m854

Tanrısever M, Istek O, Eroksuz H, Karabulut B, Ozcan EC, Bıngul MB, Guler R, Dundar S. Effects of local application of bovine amniotic fluid on fracture healing in rats (Rattus norvegicus). Rev. Cient. FCV–LUZ. [Internet]. 2024; 34(1):e34332. https://doi.org/m853

Published
2024-07-27
How to Cite
1.
Istek O, Tanrisever M, Atille Aydin M, Pak P, Eroksuz H, Karabulut B, Ekinci E, Dundar S. Evaluation of the effect of local Bovine Amniotic Fluid on Osseointegration of Titanium Implants: A Histologic and Histomorphometric Study. Rev. Cient. FCV-LUZ [Internet]. 2024Jul.27 [cited 2024Nov.20];34(2):6. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/42496
Section
Veterinary Medicine