Identification of variants in GBP1 and GBP5 Genes associated with susceptibility and resistance to porcine reproductive and respiratory syndrome in Uruguayan Creole pigs

  • María del Carmen Montenegro Universidad de la República, Facultad de Veterinaria, Unidad Académica de Genética y Mejora Animal. Montevideo, Uruguay
  • Nariné Balemian Universidad de la República, Facultad de Veterinaria, Unidad Académica de Genética y Mejora Animal. Montevideo, Uruguay
  • Bibiana Freire Universidad de la República, Facultad de Veterinaria, Unidad Académica de Animales de Granja. Montevideo, Uruguay
  • Cecilia Carballo Universidad de la República, Facultad de Agronomía, Unidad de Producción de Cerdos. Montevideo, Uruguay
  • Silvia Llambí Universidad de la República, Facultad de Veterinaria, Unidad Académica de Genética y Mejora Animal. Montevideo, Uruguay
Keywords: genetic resistance, creole pigs, PRRS

Abstract

Porcine reproductive and respiratory syndrome (PRRS) is a viral disease that affects pigs, causing significant economic losses in the global swine industry due to reproductive and respiratory problems. The causative agent of PRRS is the PRRS virus (PRRSV), primarily transmitted through direct or indirect contact via respiratory or oral routes. Despite biosecurity measures, monitoring, and vaccination, there is currently no fully effective vaccine against this virus. Research has identified a quantitative trait locus on chromosome 4 associated with PRRSV resistance. This locus includes genetic polymorphisms rs80800372 (WUR) and rs340943904 in the GBP1 and GBP5 genes, respectively. PRRSV has been detected in South America, including Uruguay in 2017. In Uruguay, the Pampa Rocha pig is the only breed of Creole pigs and is at risk due to its small population. In this context, the objective was assessing genetic variability in the Pampa Rocha breed for relevant variables related to PRRS resistance. The study determined the genotype for these variants using the end–point PCR technique, followed by Sanger sequencing. In the study, corresponding alleles were identified for each variable of interest, with allele frequencies of 0.825 for the A allele and 0.175 for the G allele in rs80800372 (WUR), and 0.825 for the G allele and 0.175 for the T allele in rs340943904. The variants are in Hardy Weinberg equilibrium and there is a linkage disequilibrium between them. The study highlights an increase in the frequency of favorable alleles related to PRRSV resistance in Pampa Rocha creole pigs. These findings underscore the importance of using molecular markers to identify PRRS–resistant animals, which could be beneficial for both pig production and animal welfare.

Downloads

Download data is not yet available.

References

Abella G, Pena RN, Nogareda C, Armengol R, Vidal A, Moradell L, Tarancon V, Novell E, Estany J, Fraile L. A WUR SNP is associated with European Porcine Reproductive and Respiratory Virus Syndrome resistance and growth performance in pigs. Res. Vet. Sci. [Internet]. 2016; 104:117–122. doi: https://doi.org/f8bw9v

You X, Li G, Lei Y, Xu Z, Zhang P, Yang Y. Role of genetic factors in different swine breeds exhibiting varying levels of resistance/susceptibility to PRRSV. Virus Res. [Internet]. 2023; 326:199057. doi: https://doi.org/gs642r

Guo C, Liu X. Editorial: Porcine reproductive and respiratory syndrome virus – animal virology, immunology, and pathogenesis. Front. Immunol. [Internet]. 2023; 14:1194386. doi: https://doi.org/gtn97d

Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front. Vet. Sci. [Internet]. 2023; 10:1289570. doi: https://doi.org/gs65df

Pileri E, Mateu E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet. Res. [Internet]. 2016; 47:108. doi: https://doi.org/f89dr6

Pena RN, Fernández C, Blasco–Felip M, Fraile LJ, Estany J. Genetic Markers Associated with Field PRRSV–Induced Abortion Rates. Viruses. [Internet]. 2019; 11(8):706. doi: https://doi.org/m7wb

Harlizius B, Mathur P, Knol EF. Breeding for resilience: new opportunities in a modern pig breeding program. J. Anim. Sci. [Internet]. 2020; 98(Suppl. 1):S150–S154. doi: https://doi.org/m7wc

Dekkers J, Rowland RRR, Lunney JK, Plastow G. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs. Vet. Microbiol. [Internet]. 2017; 209:107–113. doi: https://doi.org/gchvxw

Wu Q, Han Y, Wu X, Wang Y, Su Q, Shen Y, Guan K, Michal JJ, Jiang Z, Liu B, Zhou X. Integrated time–series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Front. Immunol. [Internet]. 2022; 13:960709. doi: https://doi.org/gsgtc6

Boddicker N, Waide EH, Rowland RRR, Lunney JK, Garrick DJ, Reecy JM, Dekkers JCM. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. [Internet]. 2012; 90(6):1733–1746. doi: https://doi.org/fzww9v

Boddicker NJ, Garrick DJ, Rowland RRR, Lunney JK, Reecy JM, Dekkers JCM. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim. Genet. [Internet]. 2014; 45(1):48–58. doi: https://doi.org/f5nb77

Koltes JE, Fritz–Waters E, Eisley CJ, Choi I, Bao H, Kommadath A, Serão NVL, Boddicker NJ, Abrams SM, Schroyen M, Loyd H, Tuggle CK, Plastow GS, Guan L, Stothard P, Lunney JK, Liu P, Carpenter S, Rowland RRR, Dekkers JCM, Reecy JM. Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. BMC Genomics. [Internet]. 2015; 16:412. doi: https://doi.org/f7nkhw

Dunkelberger JR, Serão NVL, Weng Z, Waide EH, Niederwerder MC, Kerrigan MA, Lunney JK, Rowland RRR, Dekkers JCM. Genomic regions associated with host response to porcine reproductive and respiratory syndrome vaccination and co–infection in nursery pigs. BMC Genomics. [Internet]. 2017; 18:865. doi: https://doi.org/m7wd

Jeon RL, Cheng J, Putz AM, Dong Q, Harding JCS, Dyck MK, Plastow GS, Fortin F, Lunney J, Rowland R, et al. Effect of a genetic marker for the GBP5 gene on resilience to a polymicrobial natural disease challenge in pigs. Livest Sci. [Internet]. 2021; 244 (Suppl. 4):104399–101413. doi: https://doi.org/m7wf

Lunney JK, Benfield DA, Rowland RRR. Porcine reproductive and respiratory syndrome virus: an update on an emerging and re–emerging viral disease of swine. Virus Res. [Internet]. 2010; 154(1–2):1–6. doi: https://doi.org/ftw8kf

Ramos N, Betancour G, Puig J, Arbiza J. An update on genetic analysis of porcine reproductive and respiratory syndrome virus type 2 (PRRSV–2) in South America: identification of ORF5 sequences of lineage 1A, 1C and 1G. Arch. Microbiol. [Internet]. 2022; 204(7):367. doi: https://doi.org/m7wg

Ramos N, Mirazo S, Castro G, Cabrera K, Osorio F, Arbiza J. First–time detection of porcine reproductive and respiratory syndrome virus (PRRSV) infection in Uruguay. Transbound. Emerg. Dis. [Internet]. 2018; 65(2):352–356. doi: https://doi.org/gcvjqg

Castro G. Situación de los recursos genéticos porcinos locales en Uruguay. Arch. Zootec. [Internet]. 2007 [cited 6 Feb 2024]; 56(Supl.1):783–788. Available in: https://goo.su/wwOFN

Food and Agriculture Organization of the United Nations (FAO). Plan de acción mundial sobre los recursos zoogenéticos y la Declaración de Interlaken [Internet]. Roma: FAO; 2007 [cited February 6, 2024]. 52 p. Disponible en: https://goo.su/zkeqY

Barlocco N. Experiencias en la caracterización productiva del cerdo Pampa Rocha en Uruguay. Producción de carne natural. En: Llambí S, coordinadora. Situación y conservación de recursos zoogenéticos porcinos. Montevideo (UY): Oficina de Publicaciones de Facultad de Veterinaria (Udelar); 2011. p. 31–39.

Vadell A, Barlocco N, Carballo C. Prolificidad y longevidad productiva de cerdas Pampa Rocha en un sistema de producción al aire libre. Rev. Computadorizada Prod. Porc. [Internet]. 2010 [cited 14 Feb 2024]; 17(2):149–153. Disponible en: https://goo.su/04Oz0

Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain–terminating inhibitors. Proc. Natl. Acad. Sci. USA. [Internet]. 1977; 74(12):5463–5467. doi: https://doi.org/dgsrk5

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer–BLAST: a tool to design target–specific primers for polymerase chain reaction. BMC Bioinform. [Internet]. 2012; 13:134. doi: https://doi.org/f38qjk

Hall TA. BioEdit: A User–Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999; 41:95–98.

Weir BS, Cockerham CC. Estimating F–Statistics for the analysis of population structure. Evolution. [Internet]. 1984; 38(6):1358–1370. doi: https://doi.org/gg27rg

Belkhir K, Borsa P, Chikhi L, Rafauste N, Bonhomme F. Page WEB de GENETIX [homepage on the Internet]. Montpellier (FR): Université de Montpellier II, Institut des Sciences de l’Evolution; 2004 [cited 14 Feb. 2024]. Available in: https://goo.su/DbgsF

Raymond M, Rousset F. GENEPOP (version 1.2): Population Genetics Software for Exact Tests dnd Ecumenicism. J. Heredity [Internet]. 1995; 86(3):248–249. doi: https://doi.org/gfkmsg

Rousset F. 2008. GENEPOP’007: A Complete Reimplementation of the Genepop Software for Windows and Linux. Mol. Ecol. Resour. [Internet]. 2008; 8(1):103–106. doi: https://doi.org/c38k86

Black WC, Krafsur ES. A FORTRAN Program for the Calculation and Analysis of Two–locus Linkage Disequilibrium Coefficients. Theor. Appl. Genet. [Internet]. 1985; 70(5):491–496. doi: https://doi.org/dcmjrk

Liang W, Li Z, Wang P, Fan P, Zhang Y, Zhang Q, Wang Y, Xu X, Liu B. Differences of immune responses between Tongcheng (Chinese local breed) and Large White pigs after artificial infection with highly pathogenic porcine reproductive and respiratory syndrome virus. Virus Res. [Internet]. 2016; 215:84–93. doi: https://doi.org/f8fkdw

Meng C, Su L, Li Y, Zhu Q, Li J, Wang H, He Q, Wang C,Wang W, Cao S. Different Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus Infection Among Chinese Native Pig Breeds. Arch. Virol. [Internet]. 2018; 163(8):2155–2164. doi: https://doi.org/gd3b6v

Kang R, Ji G, Yang X, Lv X, Zhang Y, Ge M, Pan Y, Li Q, Wang H, Zeng F. Investigation on Host Susceptibility of Tibetan Pig to Infection of Porcine Reproductive and Respiratory Syndrome Virus Through Viral Challenge Study. Vet. Microbiol. [Internet]. 2016; 183:62–68. doi: https://doi.org/f79dx3

Hickmann FMW, Braccini Neto J, Kramer LM, Huang Y, Gray KA, Dekkers JCM, Sanglard LP, Serão NVL. Host Genetics of Response to Porcine Reproductive and Respiratory Syndrome in Sows: Reproductive Performance. Front. Genet. [Internet]. 2021; 12:707870. doi: https://doi.org/m7wh

Montenegro M, Llambí S, Castro G, Barlocco N, Vadell A, Landi V, Delgado JV, Martínez A. Genetic Characterization of Uruguayan Pampa Rocha Pigs with Microsatellite Markers. Genet. Mol. Biol. [Internet]. 2015; 38(1):48–54. doi: https://doi.org/f67n2g

Khatun A, Nazki S, Jeong CG, Gu S, Mattoo SUS, Lee SI, Yang MS, Lim B, Kim KS, Kim B, Lee KT, Park CK, Lee SM, Kim WI. Effect of Polymorphisms in Porcine Guanylate–Binding Proteins on Host Resistance to PRRSV Infection in Experimentally Challenged Pigs. Vet. Res. [Internet]. 2020; 51:14. doi: https://doi.org/m7wj

Kim S, Cho ES, Kim YS, Lim Y, Jeong SA, Song M, Lee KT, Kim JM. Novel Insight into Linkage Disequilibrium and Additive Effect of GBP1 and GBP5 SNP Haplotypes Associated with Porcine Reproductive and Respiratory Syndrome Virus Susceptibility in Korean Native Pigs. Anim. Genet. [Internet]. 2021; 52(6):897–898. doi: https://doi.org/gpw4nj

Published
2024-07-16
How to Cite
1.
Montenegro M del C, Balemian N, Freire B, Carballo C, Llambí S. Identification of variants in GBP1 and GBP5 Genes associated with susceptibility and resistance to porcine reproductive and respiratory syndrome in Uruguayan Creole pigs. Rev. Cient. FCV-LUZ [Internet]. 2024Jul.16 [cited 2024Nov.20];34(2):5. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/42487
Section
Veterinary Medicine