Variation in the shape and size of the scale of the Tigris bream (Acanthobrama marmid, Heckel, 1843) from the Tigris River, Türkiye attributed to Seasonality, Age and Sex: A geometric morphometric study
Abstract
In this study, the Tigris bream Acanthobrama marmid individuals (44 females and 31 males) were captured from the Tigris River. The scale size (as centroid size) and shape were analyzed separately using 2–dimensional geometric morphometric methods. Procrustes ANOVA revealed significant differences in scales size between sexes, while no difference in shape was observed. Groups based on season and age showed significant differences in both size and shape. Female individuals had larger scale sizes than males, with the scales of the Autumn group being larger than those of the Spring and Summer groups. Scale size also increased with age groups. PCA analysis showed variation in the first five components when examined by age, season, and gender. CVA and DFA results indicated significant differences in shape between different age groups and seasonal groups, but no significant differences between sexes were observed.
Downloads
References
Çiçek E, Sungur S, Fricke R, Seçer B. Freshwater lampreys and fishes of Türkiye; an annotated checklist, 2023. Turk. J. Zool. [Internet]. 2023; 47(6):324–468. doi: https://doi.org/mqrg
Kaya C, Turan D, Ünlü E. The latest status and distribution of fishes in upper Tigris River and two new records for Turkish freshwaters. Turk. J. Fish. Aquat. Sci. 2016; 16(3):545–562. doi: https://doi.org/mqrh
Coad BW. Freshwater fishes of Iraq. Sofia, Bulgaria: Pensoft Publishers; 2010. 294 p.
Küçük F, Bektaş Y, Güçlü SS, Kaya C. The systematic position of Acanthalburnus microlepis (De Filippi, 1863) and contributions to the genus Acanthobrama (Cyprinidae: Leuciscinae) in Turkey. Iran. J. Ichthyol. [Internet]. 2014 [cited 20 Nov. 2023]; 1(2):96–105. Available in: https://goo.su/hGMS9E
Özcan EI. [Determining some growth characteristics of Acanthobrama marmid (Heckel, 1843) population living in the Pulumur river]. Ecol. Life Sci. [Internet]. 2020; 15(4):121–133. [Turkish]. doi: https://doi.org/mqrj
Ibañez AL, Cowx IG, O’Higgins P. Geometric morphometric analysis of fish scales for identifying genera, species and local populations within Mugilidae. Can. J. Fish. Aquat. Sci. [Internet]. 2007; 64(8):1091–1100. doi: https://doi.org/cx6ncv
Farinordin FA, Nilam WSW, Husin SM, Samat A, Nor SMD. Scale Morphologies of Freshwater Fishes at Tembat Forest Reserve, Terengganu, Malaysia. Sains Malaysiana. [Internet]. 2017; 46(9):1429–1439. doi: https://doi.org/mqrk
Vignon M. Ontogenetic trajectories of otolith shape during shift in habitat use: Interaction between growth and environment. J. Exper. Mar. Biol Ecol. [Internet]. 2012; 420–421:26–32. doi: https://doi.org/f99637
Jawad LA. Comparative scale morphology and squamation patterns in triplefins (Pisces: Teleostei: Perciformes: Tripterygiidae). Tuhinga, 2005; 16: 137–168.
Zhu D, Zhang C, Liu P, Jawad LA. Comparison of the morphology, structures and mechanical properties of teleost fish scales collected from New Zealand. J Bionic Engin. [Internet]. 2019; 16:328–336. doi: https://doi.org/mqrm
Viertler A, Salzburger W, Ronco F. Comparative scale morphology in the adaptive radiation of cichlid fishes (Perciformes: Cichlidae) from Lake Tanganyika. Biol. J. Linn. Soc. [Internet]. 2021; 134(3):541–556. doi: https://doi.org/mqrn
Ibáñez AL, Jawad LA. Morphometric variation of fish scales among some species of rattail fish from New Zealand waters. J. Mar. Biol. Assoc. U.K. [Internet]. 2018; 98(8):1991–1998. doi: https://doi.org/gfss4j
Bilici S. A Distinction of some cyprinid species from Tigris River basin according to scales by geometric morphometric methods. Harran Üniv. Vet. Fak. Der. [Internet]. 2020; 9(2):148–153. doi: https://doi.org/mqrs
Kuusipalo L. Evolutionary inferences from the scale morphology of Malawian Cichlid Fishes. Adv. Ecol. Res. [Internet]. 2000; 31:377–397. doi: https://doi.org/dqv9qb
Khemiri S, Meunier FJ, Laurin M, Zylberberg L. Morphology and structure of the scales in the Gadiformes (Actinopterygii: Teleostei: Paracanthopterygii) and a comparison to the elasmoid scales of other Teleostei. Cah. Biol. Mar. [Internet] 2001 [cited 20 Nov. 2023]; 42(4):345–362. Available in: https://bit.ly/3TQSNmM
Esmaeili HR, Gholami Z. Scanning electron microscopy of the scale morphology in Cyprinid fish, Rutilus frisii kutum Kamenskii, 1901 (Actinopterygii: Cyprinidae). Iran. J. Fish. Sci. [Internet]. 2011[cited 25 Nov. 2023]; 10(1):155–166. Available in: https://goo.su/0p7A9F
Yedier S, Bostanci D, Kontaş S, Kurucu G, Apaydin Yağci M, Polat N. Comparison of otolith morphology of invasive big–scale sand smelt (Atherina boyeri) from natural and artificial lakes in Turkey. Iran. J. Fish. Sci. [Internet]. 2019; 18(4):635–645. doi: https://doi.org/mqrt
Şen D, Aydın R. Lengths Determination by Back Calculation Method of Acanthobrama marmid Heckel, 1843 Living in Keban Dam Lake. GEFAD [Internet]. 2001 [cited 5 Dec. 2023]; 27(1):47–51. [Turkish]. Available in: https://goo.su/qkMUQ9
Çolak A. Keban Baraj Gölü’nde Bulunan Balık Stoklarının Populasyon Dinamiği. Doğa Bilim Der. 1982; 6(1):1–14.
Özdemir N. Keban Baraj Gölü’nde Avlanan Acanthobrama marmid’ in Et Verimi ile İlgili Özellikler. Fırat Üniv. Fen Fak. Der. 1982; 1(1):58–62.
Şahin AG, Tepe R, İspir Ü. The Investigation of Meat Yield of Acanthobrama marmid Heckel, 1843 From Karakaya Dam Lake. SDU J. Nat. Appl. Sci. [Internet]. 2018; 22(SI):536–540. doi: https://doi.org/mqrx
Aydın R; Şen D. Keban baraj gölü Ova bölgesi balıklarından Acanthobrama marmid Heckel, 1843’ün biyolojik özelliklerinin incelenmesi. Firat Univ. Fen Müh. Bil. Der. 1995; 7(1):11–23.
Ünlü E, Balcı H, Akbayın H. Some Biological Charakteristics of the Acanthobrama marmid Heckel, 1843 in the Tigris River (Turkey). Tr. J. Zool. 1994; 18:131–139.
Bookstein FL. Morphometric Tools for Landmark Data. Geometry and Biology [Internet]. New York: Cambridge University Press; 1992. 435 p. doi: https://doi.org/cf3kjk
Rohlf FJ, Marcus LF. A revolution in morphometrics. Trends Ecol. Evol. 1993; 8(4):129–132. doi: https://doi.org/dt6pzz
Zelditch ML, Swiderski, DL, Sheets HD, Fink WL. Geometric Morphometrics for Biologists: A Primer. New York: Academic Press; 2004. 443 p. doi: https://doi.org/mqrz
Rohlf FJ. The tps series of software. Hystrix It. J. Mamm. [Internet]. 2015; 26(1):9–12. doi: https://doi.org/ghcfjd
Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. [Internet]. 2011; 11(2):353–357. doi: https://doi.org/b4m8ct
R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. 2019; 20 p. Available in: https://www.r–project.org/
The Jamovi Project. Jamovi. (Version 2.4) [Computer Software] [Internet]. Sydney, Australia: Jamovi Project. 2023. Available in: https://www.jamovi.org.
Carbonara P. Follesa MC, editors. Handbook on fish age determination: a Mediterranean experience. Rome: FAO. 2019. 192 p. (General Fisheries Commission for the Mediterranean – Studies and reviews; No. 98).
Chen X, Liu B, Fang Z, Age and Growth of Fish. In: Chen X, Liu B, editors. Biology of Fishery Resources [Internet]. Singapore: Springer; 2022. p. 71–111. doi: https://doi.org/mqr6
Gümüş A. Yilmaz, M. Polat N. Relative importance of food items in feeding of Chondrostoma regium Heckel, 1843, and its relation with the time of annulus formation. Turk. J. Zool. [Internet]. 2002 [cited 26 Nov. 2023]; 26(3):271–278. Available in: https://goo.su/aZhU4
Staszny Á. Ferincz Á. Weiperth A. Havas E. Urbányi B. Paufovits G. Scate–morphornetry study to discriminate Gibel Carp (Carassius gibelio) populations in the Balaton–Catchment (Hungary). Acta Zool. Acad. Sci. Hung. [Internet]. 2012; 58(Suppl. 1):19–27. doi: https://doi.org/mqsb
Ibáñez AL, Cowx IG, O’Higgins P. Geometric morphometric analysis of fish scales for identifying genera, species, and local populations within the Mugilidae. Can. J. Fish. Aquat. Sci. [Internet]. 2007; 64(8):1091–1100. doi: https://doi.org/cx6ncv
Ibáñez AL, Cowx IG, O’Higgins P. Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zool. J. Linn. Soc. [Internet] 2009; 155(4):834–844. doi: https://doi.org/cfh85v
Staszny Á, Havas E, Kovács R, Urbányi B, Paulovits G, Bencsik D, Ferincz Á, Müller T, Specziár A, Bakos K, Csenki Z. Impact of environmental and genetic factors on the scale shape of zebrafish, Danio rerio (Hamilton 1822): A geometric morphometric study. Acta Biol. Hung. [Internet]. 2013; 64(4):462–475. doi: https://doi.org/f5jhf7
Samper Carro SC, Louys J, O'Connor S. Shape does matter: A geometric morphometric approach to shape variation in Indo–Pacific fish vertebrae for habitat identification. J. Archaeol. Sci. [Internet]. 2018; 99:124–134. doi: https://doi.org/gf5zh5
Moreira C, Froufe E, Vaz–Pires P, Triay–Portella R, Correia, AT. Landmark–based geometric morphometrics analysis of body shape variation among populations of the blue jack mackerel, Trachurus picturatus, from the North–East Atlantic. J. Sea Res. [Internet]. 2020; 163:101926. doi: https://doi.org/gs4wjr
Ibáñez AL, Jawad LA, David B, Rowe D, Ünlü E. The morphometry of fish scales collected from New Zealand and Turkey. N. Z. J. Zool. [Internet]. 2023; 50(2):318–328. doi: https://doi.org/mqr8
Çiçek T, Kaya A, Bilici S, Dörtbudak MY. Discrimination of Capoeta trutta (Heckel, 1843) and Capoeta umbla (Heckel, 1843) from scales by Geometric Morphometric Methods. J. Surv. Fish. Sci. [Internet]. 2017 [cited 30 Oct. 2023]; 4(1):8–17. Available in: https://bit.ly/49nGOTr
Richards RA, Esteves C. Use of scale morphology for discriminating wild stocks of Atlantic striped bass. Trans. Am. Fish. Soc. 1997; 126(6):919–925. doi: https://doi.org/ctg67h
Ibáñez–Cervantes G, León–García G, Castro–Escarpulli G, Mancilla–Ramírez J, Victoria–Acosta G, Cureño–Díaz MA, Sosa–Hernández O, Bello–López J.M. Evolution of incidence and geographical distribution of Chagas disease in Mexico during a decade (2007–2016). Epidemiol. Infect. [Internet]. 2019; 147:e41. doi: https://doi.org/mqr9
Wichard T, Poulet S, Halsband–Lenk C, Albaina A, Harris R, Liu D, Pohnert G. Survey of the Chemical Defence Potential of Diatoms: Screening of Fifty Species for α, β, γ, δ–unsaturated aldehydes. J. Chem. Ecol. 2005; [Internet]. 31:949–958. doi: https://doi.org/c78w8n
Teimori A. Scanning electron microscopy of scale and body morphology as taxonomic characteristics of two closely related cyprinid species of genus Capoeta Valenciennes, 1842 in Southern Iran. Curr. Sci. [Internet]. 2016; 111(7):1214–1219. doi: https://doi.org/f878cb
Dörtbudak MB, Sağlam YS, Yıldırım S, Timurkan MÖ. Examen de adenovirus con métodos moleculares y patológicos en casos de pneumonía ovina. Rev. MVZ Córdoba. [Internet]. 2022; 27(Suppl.):e2738. doi: https://doi.org/mqsc
Clabaut C, Bunje PME, Salzburger W, Meyer A. Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Evolution [Internet]. 2007; 61(3):560–578. doi: https://doi.org/ctd49w
Dörtbudak MY. Özcan G. Relationship of Otolith Size to Standard Length of the Tigris Bream (Acanthobrama marmid (Heckel. 1843)) in Tigris River, Şırnak, Turkey. In: Özcan G, Tarkan AS, Özcan T, editors. Proceedings of International Marine & Freshwater Sciences Symposium; 2018 Oct. 18–21; Kemer, Antalya, Turkey: MARFRESH2018. 2018. p. 139–143.
Copyright (c) 2024 Serbest Bilici, Alaettin Kaya, Muhammed Yaşar Dörtbudak, Tarık Çiçek, Erhan Ünlü
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.