Hemogram values of immature Green Turtles (Chelonia mydas) in the Gulf of Venezuela
Abstract
Numerous studies on haematological parameters in sea turtles Worldwide allow assessing the health status of populations of these species. These values can give a first indication of some alteration in their health condition. It is important to note that these parameters may vary for various reasons such as geographic location, species, population, and size. In Venezuela, most blood profiles studies have been aimed at adult individuals. In this study, it was described the hemograms of immature specimens of Green Turtles (Chelonia mydas) by–caught in the Gulf of Venezuela in various artisanal fishing ports. Blood samples from 28 Green Turtle individuals between the years 2009 – 2012 were analysed. The average Curved Carapace Length was 36.06 ± 16.15 cm; hence all specimens were considered immature individuals. The registered haematological variables showed values within the reference ranges for studied variables according to previous research performed in the area; however, some individuals showed values of Haematocrit, RGR (106·μL-1), Heterophils, Eosinophils, Monocytes and Lymphocytes higher than the reference values. Complete blood counts are a fast and cheap diagnostic method, which allows evaluating, detecting, and ruling out several diseases. These efforts will make it possible to differentiate sick individuals from healthy ones and identify changes in parameters due to physiological processes, such as growth, hormonal status, and stress. Depending on the pathological findings, it is possible to define rehabilitation strategies and monitoring of the specimens.
Downloads
References
Bolten AB, Bjorndal KA. Blood profiles for a wild population of green turtles (Chelonia mydas) in the Southern Bahamas: Size–specific and sex–specific relationships. J. Wildl. Dis. [Internet]. 1992; 28(3):407–413. doi: https://doi.org/gm76gb
Aguirre AA, Balazs GH. Blood Biochemistry Values of Green Turtles, Chelonia mydas, with and without Fibropapillomatosis. Comp. Haematol. Intern. [Internet]. 2000; 10:132–137. doi: https://doi.org/ccdphb
Hamann M, Schäuble CS, Simon T, Evans S. Demographic and health parameters of green sea turtles Chelonia mydas foraging in the Gulf of Carpentaria, Australia. Endang. Spec. Res. [Internet]. 2006; 2:81–88. doi: https://doi.org/c683g4
Thomson JA, Burkholder D, Heithaus MR, Dill LM. Validation of a rapid visual–assessment technique for categorizing the body condition of green turtles (Chelonia mydas) in the field. Cop. [Internet]. 2009; 2009(2):251–255. doi: https://doi.org/ftch3m
Anderson ET, Craig AH, Stringer EM, Cluse WM. Evaluation of hematology and serum biochemistry of cold–stunned green sea turtles (Chelonia mydas) in North Carolina, USA. J. Zoo. Wildl. Med. [Internet]. 2011; 42(2):247–255. doi: https://doi.org/cc4hd7
Amadi CN, Frazzoli C, Orisakwe, OE. Sentinel species for biomonitoring and biosurveillance of environmental heavy metals in Nigeria. J. Environ. Sci. Health A, Part C. [Internet]. 2022; 38(1):21–60. doi: https://doi.org/mdwd
Ramírez–Acevedo LM, Martínez–Blas SS, Fuentes–Mascorro G. Hemograma y características morfológicas de las células sanguíneas de tortuga golfina (Lepidochelys olivacea) de Oaxaca, México. Rev. Cientif. FCV–LUZ. [Internet]. 2012 [consultado 28 Mar. 2023]; 22(5):468–476. Disponible en: https://goo.su/r397.
Noboa–Marín GP. Descripción de parámetros sanguíneos mediante hemogramas en Chelonia mydas en el centro de rehabilitación de fauna marina del Parque Nacional Machalilla, Puerto López [tesis de grado en Internet]. Quito, Ecuador: Universidad de las Américas; 2019 [consultado 27 Abr. 2023]. 117 p. Disponible en: https://goo.su/jMIkY.
Aguirre AA, Balazs GH, Spraker TR, Gross TS. Adrenal and Hematological Responses to Stress in Juvenile Green Turtles (Chelonia mydas) with and without Fibropapillomas. Physiol. Zool. [Internet]. 1995 [consultado 27 Mar. 2023]; 68(5):831 – 854. Disponible en: https://goo.su/8YLsG.
Flint M, Morton JM, Limpus CJ, Patterson–Kane JC, Murray PJ, Mills PC. Development and application of biochemical and haematological reference intervals to identify unhealthy green sea turtles (Chelonia mydas). Vet. J. [Internet]. 2009; 185 (3):299–304. doi: https://doi.org/bx5wcd
Fong C, Chen H, Cheng I. Blood profiles from wild populations of green sea turtles in Taiwan. J. Vet. Med. Anim. Health. [Internet]. 2010 [consultado 12 Abr. 2023]; 2(2):8–10. Disponible en: https://goo.su/RdjB.
Page–Karjian A, Rivera S, Torres F, Diez C, Moore D, Van Dam R, Brown C. Baseline blood values for healthy free–ranging green sea turtles (Chelonia mydas) in Puerto Rico. Comp. Clin Pathol. [Internet]. 2014; 24:567–573. doi: https://doi.org/mdwf
Work TM, Raskin RE, Balazs GH, Whittaker SD. Morphologic and cytochemical characteristics of blood cells from green turtles. Ame. J. Vet. Res. [Internet]. 1998: 59(10):1252–1257. doi: https://doi.org/mdwg
Casal AB, Camacho M, López–Jurado LF, Juste C, Orós J. Comparative study of hematologic and plasma biochemical variables in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta). Vet. Clin. Pathol. [Internet]. 2009; 38(2):213–218. doi: https://doi.org/ckd2nv
Prieto–Torres DA., Hernández–Rangel JL, Bravo–Henrique AR, Alvarado–Árraga MC, Dávila–Ojeda MJ, Quiroz–Sánchez NR. Valores hematológicos de la población anidadora de tortuga verde (Chelonia mydas) en el Refugio de Fauna Silvestre Isla de Aves, Venezuela. Rev Cientif. FCV–LUZ. [Internet]. 2012 [consultado 11 Mar. 2023]; 22(3):273 – 280. Disponible en: https://goo.su/ey1xoqc.
Montilla–Fuenmayor AJ, Prieto–Torres D, Hernández JL, Alvarado MC. Estudio hematológico de tortugas marinas Eretmochelys imbricata y Caretta caretta presentes en la alta Guajira, Golfo de Venezuela. Rev. Cientif. FCV–LUZ. [Internet]. 2014 [consultado 11 Mar. 2023]; 24(4):363–371. Disponible en: https://goo.su/3MH5TD.
Montiel–Villalobos MG, Barrios–Garrido H, Abreu–Grobois A, Rodríguez–Clark K. 2014. Origen natal de las tortugas verdes (Chelonia mydas) extraídas artesanalmente en el Golfo de Venezuela. Resúmenes del 1er Congreso Latinoamericano de Genética para la conservación [Internet]. 5–9 May. 2014; Macuto, Venezuela. Caracas, Venezuela: ReGeneC; 2014 [consultado 21 Mar. 2023]; p. 75. Disponible en: https://goo.su/Uezn3.
Barrios–Garrido H, Montiel–Villalobos MG, Palmar J, Rodríguez–Clark KM. Wayuú capture of green turtles, Chelonia mydas, in Gulf of Venezuela: A major Caribbean artisanal turtle fishery. Ocean Coast Manag. [Internet]. 2020; 188: 105123. https://doi.org/mdwh
Barrios–Garrido H, Espinoza–Rodríguez N, Shimada T, Wildermann N. Body condition index in rescued green turtles (Chelonia mydas) in the Gulf of Venezuela: a seven–year assessment. Book of abstracts of the 35th Annual Symposium on Sea Turtle Biology and Conservation [Internet]. 18–24 April 2015; Dalaman, Türkiye. Estambul, Türkiye: MACART press; 2015 [consultado 21 Mar. 2023]; p. 17. Disponible en: https://goo.su/j7Znz.
Vásquez–Carrillo C, Noriega–Hoyos CL, Hernández–Rivera L, Jáuregui–Romero GA, Sullivan–Sealey K. Genetic Diversity and Demographic Connectivity of Atlantic Green Sea Turtles at Foraging Grounds in Northeastern Colombia, Caribbean Sea. Front. Mar. Sci. [Internet]. 2020; 7(96):e00096. doi: https://doi.org/gh248p
Montilla–Fuenmayor AJ, Hernández–Rangel JL, Alvarado–Árraga MC. Valores hematológicos de la tortuga verde (Chelonia mydas) presenta en la alta Guajira. Rev. Cientif. FCV–LUZ. [Internet]. 2006 [consultado 21 Mar. 2023]; 16(3):219–226. Disponible en: https://goo.su/jBGO.
Montilla–Fuenmayor AJ, Hernández–Rangel JL, Bravo AR, Vera VJ, Mesa JF. Valores bioquímicos en sangre de la tortuga verde (Chelonia mydas) presentes en la alta Guajira, Venezuela. Rev. Cientif. FCV–LUZ. [Internet]. 2008 [consultado 21 Mar. 2023]; 18 (4):431–436. Disponible en: https://goo.su/FWTUU6o.
Barrios–Garrido HA., Montiel–Villalobos M. Strandings of Leatherback turtles (Dermochelys coriacea) along the western and southern coast of the Gulf of Venezuela. Herpetol. Conserv. Biol. [Internet]. 2016 [consultado 1 Abr. 2023]; 11(1):244–252. Disponible en: https://goo.su/TynnZNK.
Guada H, Solé–Sempere G. WIDECAST Plan de Acción para la Recuperación de las Tortugas Marinas de Venezuela. Suárez A, editor. Kingston, Jamaica: UNEP Caribbean Environment Programme; 2000. 112 p. Informe Técnico del PAC No. 39.
Morán L, Severeyn H, Barrios–Garrido H. Moluscos bivalvos perforadores de rocas coralinas submareales de la alta Guajira, Golfo de Venezuela. Intercien. [Internet]. 2014 [consultado 11 Abr. 2023]; 39(2):136–139. Disponible en: https://goo.su/claCNZ6.
Rueda–Roa DT, Muller–Karger FE. The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep Sea Res Part I Oceanogr. Res. Pap. [Internet]. 2013; 78:102–114. doi: https://doi.org/f44c6s
Rodríguez G. Fisiografía del Sistema de Maracaibo. En: Rodríguez G, editor. El Sistema de Maracaibo: Biología y Ambiente. 2da Ed. Caracas, Venezuela: Instituto Venezolano de Investigaciones Científicas (IVIC); 2000; p 7–19.
Barrios–Garrido H, Wildermann N, Espinoza–Rodríguez N, Palmar J, Morán, L. New Techniques for the rescue of sea turtles and field data assessment to estimate their population status in the Gulf of Venezuela. 2012. p 81–82. NOAA Technical Memorandum NMFS–SEFSC–631.
Martínez–Silvestre A, Lavín S, Cuenca R. Hematología y citología sanguínea en reptiles. Clin. Vet. Peq. Anim. [Internet]. 2011 [consultado 11 Abr. 2023]; 31(3):131–141. Disponible en: https://goo.su/xDkwkUO.
Ferrando V. Bioquímica sanguínea de la tortuga verde juvenil (Chelonia mydas) en Cerro Verde, Rocha, Uruguay [tesis de grado en Internet]. Montevideo, Uruguay: Universidad de la Republica; 2010 [consultado 18 Abr. 2023]. 41 p. Disponible en: https://goo.su/hFaK65.
Mérida–López AM. Determinación de valores de referencia para hematología, química sérica clínica, y morfometría de la tortuga negra (Chelonia agassizii) en la poza del nance, Sipacate, la gomera, Escuintla [tesis de grado en Internet]. Guatemala: Universidad de San Carlos de Guatemala; 2011 [consultado 27 Abr. 2023]. 36 p. Disponible en: https://goo.su/ZFLUM5l.
Work TM, Balazs GH. Relating Tumor Score to Hematology in Green Turtles with Fibropapillomatosis in Hawaii. J. Wildl. Dis. [Internet]. 1999; 35(4):804–807. doi: https://doi.org/mdwk
Cannon MS. The morphology and cytochemistry of the blood leukocytes of Kemp's ridley sea turtle (Lepidochelys kempii). Can. J. Zool [Internet]. 1992; 70(7):1336–1340. doi: https://doi.org/d497qj
Sypek J, Borysenko M. Reptiles. En: Rowley AF, Ratcliffe NA, editors. Vertebrate Blood Cells. Cambridge, UK: Cambridge University press; 1988. p. 211–256.
Campbell T. Chapter 28 – Clinical pathology of reptiles. En: Divers SJ, Mader DR, editors. Reptile Medicine and Surgery. 2nd. Ed. [Internet]. Saint Louis, MO, USA: Elsevier Health Sciences; 2006. p. 453–470. https://doi.org/dp8tnx
Kophamel S, Rudd D, Ward LC, Shum E, Ariel E, Mendez D, Starling J, Mellers R, Burchell RK, Munns SL. Haematological and biochemical reference intervals for wild green turtles (Chelonia mydas): a Bayesian approach for small sample sizes. Conserv. Physiol. [Internet]. 2022; 10(1):e–coac043. doi: https://doi.org/mdwn
Conde B, Alvarado MC, Espinoza–Rodríguez N, Barrios–Garrido H. Primer reporte de coccidiosis en tortugas verdes (Chelonia mydas) del Golfo de Venezuela. Caldasia. [Internet]. 2019; 41(2):278–288. https://doi.org/mdwq
Espinoza–Rodríguez N, Barrios–Garrido H. Fibropapillomatosis in immature Green Turtles (Chelonia mydas) from the Gulf of Venezuela. Rev. Cientif. FCV–LUZ. [Internet]. 2019; 32:1–6. doi: https://doi.org/mdws
Herbst L, Ene A, Su M, Desalle R, Lenz J. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Curr. Biol. [Internet]. 2004; 14(17):R697–R699. doi: https://doi.org/cgwj3d
Ward JR, Lafferty KD. The Elusive Baseline of Marine Disease: Are Diseases in Ocean Ecosystems Increasing? PLoS Biol. [Internet]. 2004; 2(4):e120. doi: https://doi.org/dbmdr7
Arthur K, Shaw G, Limpus CJ, Udy JW. A review of the potential role of tumour–promoting compounds produced by Lyngbya majuscula in marine turtle fibropapillomatosis. Afr. J. Mar. Sci. [Internet]. 2006; 28(2):441–446. doi: https://doi.org/cvgcr3
Carrasquero R, Barrios–Garrido H. Amenazas derivadas de la explotación de hidrocarburos sobre poblaciones de tortuga cardon Dermochelys coriácea en el Golfo de Venezuela. REDIELUZ. [Internet]. 2021 [consultado 27 Abr. 2023]; 11(1):76–84. Disponible en: https://goo.su/NC9pp.
Mansfield KL, Putman NF. Oceanic habits and habitats: Caretta caretta. En: Wyneken J, Lohmann KJ, Musick JA (editors). The Biology of Sea Turtles. Vol 3. Boca Raton, FL, USA: CRC Press; 2013. p. 189−210.
Wallace BP, Stacy BA, Cuevas E, Holyoake C, Lara PH, Marcondes AC, Miller JD, Nijkamp H, Pilcher NJ, Robinson I, Rutherford N, Shigenaka G. Oil spills and sea turtles: documented effects and considerations for response and assessment efforts. Endang. Species. Res. [Internet]. 2020; 41:17–37. doi: https://doi.org/mdwt
Copyright (c) 2024 Nínive Espinoza–Rodríguez, Brirelys Conde, Héctor Barrios–Garrido
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.