Identification of bacteria present in three intravenous solutions in a period greater than 72 hours

  • Marlon Andrés Batallas-Canchig Universidad Católica de Cuenca. Cuenca, Azuay, Ecuador
  • Edy Paul Castillo-Hidalgo Universidad Católica de Cuenca. Cuenca, Azuay, Ecuador
  • Jessica Carolina Gancino–Carvajal Universidad Católica de Cuenca. Cuenca, Azuay, Ecuador
Keywords: Fluid therapy, contamination, intravenous solution, bacteria

Abstract

Intravenous solutions are used in daily practice in Veterinary Medicine for medical treatments such as maintenance and/or replacement of fluids and administration of drugs, but when reused for long periods of time the risk of bacterial contamination increases. The main objective of this research was the evaluation of the contamination rate of three crystalloid intravenous solutions, during a period of more than 72 h in common clinical situations in the veterinary environment. The solutions were analyzed at 96, 120 and 144 h. It was determined that after 96 h of use of the intravenous solutions, there is bacterial contamination up to 100%, as in the case of 50% Dextrose, and 75% contamination at 120 h of the 0,9% sodium chloride solution, and up to 50% contamination of the Ringer's Lactate solution at 144 h. It is concluded that after 96 h of handling the intravenous solutions there is already the presence of environmental bacteria, especially in the dextrose solutions which are the most prone to contamination, despite the application of appropriate antiseptic techniques.

Downloads

Download data is not yet available.

References

Harol D, Tracey J, Jonhson A, Knowlle P, Meyer R, Rucinsky R. AAHA/AAFP Fluid Therapy Guidelines for Dogs and Cats AAHA Standards of Accreditation. Ame. Anim. Hosp. Assoc. 2013; 49:149–59. doi: https://doi.org/f4w2p5

Díaz A, Rubio P. Identificación de bacterias presentes en tres soluciones intravenosas en un período de 72 h. Rev. Científ. FCV–LUZ. 2022; 32:1–4. doi: https://doi.org/kfpx

Chaveeri J, Díaz J, Cordero E. Generalidades sobre fluidoterapia y desórdenes electrolíticos, enfoque en la farmacia hospitalaria: Primera Parte. Pharm. Care. 2012; 1:12.

Arencibia DF, Rosario LA, Infante JF, Fariñas M, López Y, Díaz D. Algunas consideraciones sobre la deshidratación en perros beagle antes de su uso en investigaciones biomédicas. REDVET. Revista Electrónica de Veterinaria [Internet] 2009 [Consultado 02 Mar 2023]; 10(11):1–10. Disponible en: https://bit.ly/3p0RhU0.

Crawford A, Harris H. Equilibrio entre el sodio el potasio. Nursing (Lond). 2011; 29:14–20.

García M, Ardila A. Cell volume variation under different concentrations of saline solution (NaCl). Rev. Col. Anest. 2009; 37:101–5.

Brock J, Smith S, Banaie N, Chang S, Alejandro D, Jaffe R. Spiking of intravenous bags does not cause time–dependent microbial contamination: a preliminary report. Infect. Contr. Hosp. Epidemiol. 2018; 39:1129–30. doi: https://doi.org/hzhm

Raad I, Hanna H, Awad A, Alrahwan A, Bivins C, Khan A. Optimal Frequency of Changing Intravenous Administration Sets: Is It Safe to Prolong Use Beyond 72 Hours. Off. J. Soc. Hosp. Epidemiol. Am. 2001; 22:136–9. doi: https://doi.org/c3jwfc

George F. Manejo de fluidos intravenosos: del uso indiscriminado y empírico al manejo racional y científico. Med. Crit. 2018; 32:100–7.

Wise R, Faurie M, Malbrain M, Hodgson E. Strategies for Intravenous Fluid Resuscitation in Trauma Patients. World J. Surg. 2017; 41:1170–83. doi: https://doi.org/gftzz4

Boysen S, Dorval P. Effects of rapid intravenous 100 % L–isomer lactated Ringer’s administration on plasma lactate concentrations in healthy dogs. J. Vet. Emerg. Crit. Care. 2014; 24:571–7. doi: https://doi.org/kfp5

Rudloff E, Hopper K. Crystalloid and Colloid Compositions and Their Impact. Front. Vet. Sci. 2021; 8: 1–8. doi: https://doi.org/kfp6

Drobatz K, Cole S. The influence of crystalloid type on acid–base and electrolyte status of cats with urethral obstruction. J. Vet. Emerg. Crit. Care. 2008; 8:355–61. doi: https://doi.org/dkp6m5

Self W, Semler M, Wanderer J, Ehrenfeld J, Byrne D, Wang L. Saline versus balanced crystalloids for intravenous fluid therapy in the emergency department: Study protocol for a cluster–randomized, multiple–crossover trial. Trials. 2017; 18:1–8. doi: https://doi.org/f99bzj

Guillamin J, Nichole M, Magnusson K, Butler M, Joshua B. Influence of hang time and location on bacterial contamination of intravenous bags in a veterinary emergency and critical care setting. J. Vet. Emerg. Crit. Care. 2017; 27:548–54. doi: https://doi.org/hzhn

Matthws K, Taylor D. Assessment of sterility in fluid bags maintained for chronic use. J. Am. Assoc. Lab. Anim. Sci. 6011; 50:708–12.

Segal S. Further confirmation that spiking of intravenous bags does not cause time–dependent microbial contamination. Infect. Contr. Hosp. Epidemiol. 2019; 40:111–2. doi: https://doi.org/hzhq

Haag A, Fitsgerald J, Penadés J. Staphylococcus aureus in animals. Microbiol. Spectr. 2019; 7:731–46. doi: https://doi.org/gg5pp3

Morales C, Cárdenas M, Moreno M, Herrera J. Neonato con terapia intravenosa: una revisión de la literatura dirigida a la prevención de riesgos. Sanus. 2020; 5(13):1–14.

Muñoz J, Zapién R, Ponce S, Álvarez J, Mosqueda J, Gallaga J. Contaminación endémica de soluciones parenterales en servicios pediátricos. Rev. Investig. Clin. 2009; 61(5):378–82.

Published
2023-06-18
How to Cite
1.
Batallas-Canchig MA, Castillo-Hidalgo EP, Gancino–Carvajal JC. Identification of bacteria present in three intravenous solutions in a period greater than 72 hours. Rev. Cient. FCV-LUZ [Internet]. 2023Jun.18 [cited 2024May20];33(2):1-. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/40397
Section
Veterinary Medicine