Determination of genetic diversity and characterization of genes associated with virulence from Escherichia coli isolates in poultry (Gallus gallus domesticus), Azuay, Ecuador

  • Fabián Manuel Astudillo-Riera Universidad de Cuenca, Facultad de Ciencias Agropecuarias. Cuenca, Ecuador
  • Kevin Fabian Astudillo-Vallejo CEMEVET. Cuenca, Ecuador
  • Ana Cecilia Pérez-Pintado Universidad de Cuenca, Facultad de Ciencias Agropecuarias. Cuenca, Ecuador
  • Antonio Javier Vallecillo Universidad de Cuenca, Facultad de Ciencias Agropecuarias. Cuenca, Ecuador
  • Sergio Emiro Rivera-Pirela Universidad de Zulia, Facultad de Ciencias Veterinarias. Maracaibo, Venezuela
  • Juan Patricio Pesántez-Vallejo Universidad de Cuenca, Departamento de Recursos Hídricos y Ciencias Ambientales. Cuenca, Ecuador
Keywords: Avian colibacillosis, bacteriological cultures, politrinucleotides (GTG)5, phylogenetic, VAG

Abstract

In the poultry industry there are different types of pathogenic and non-pathogenic Escherichia coli, depending on the virulence associated genes (VAG) present in the bacteria. However, there are no reports for the area on the identification of E. coli VAG in broiler chickens especially in Ecuadorian andean communities. The main objective of this study was to identify the genetic diversity and the presence of VAG in E. coli strains. In this study, E. coli VAG were characterized in the Azuay Province (Ecuador) using isolates from 30 bacteriological cultures from chickens with clinical signs of colibacillosis. The PCR technique was used to detect the uspA gene (specific from E. coli) and also the GAV of adhesins (fimC), exotoxins (cvaA) and iron uptake-transport systems (iucD; chuA; fyuA) in each bacteria isolate. Pathogenic E. coli were molecularly typed by evaluating polytrinucleotide (GTG)5 sequences. The 83.33 % of the cultures presented the uspA gene from E. coli. The frequencies of positive VAG were 48 % for the chuA gene, 20 % for the cvaA gene, 84 % for the fimC gene, 36 % for the fyuA gene and 56 % for the iucD gene. Sequence evaluation (GTG)5 revealed two main phylogenetic groups of E. coli most of which carried at least one VAG gene. These results contribute to a more precise diagnosis of colibacillosis, as well as to is control and treatment by poultry farmers.

Downloads

Download data is not yet available.

References

AHMED, A.M.; SHIMAMOTO, T. Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157:H7 isolated from meat and dairy products. Internat. J. Food Microbiol. 193: 68–73. 2015. https://doi.org/f6vqsn.

ALI, A.; ABDEL-MAWGOUD, A.; DAHSHAN, A.; ELSAWAH, A.; NASSEF, S. Escherichia coli in broiler chickens in Egypt, its virulence traits and vaccination as an intervention strategy. Novel Res. Microbiol. J. 3: 415–427. 2019. https://doi.org/j697.

CALNEK, B.W.; BARNES, H.J.; BEARD, C.W.; REID, W.M.; YODER Jr, H.W. Micoplasmosis. Enfermedades de las Aves. 2ª Ed. Manual Moderno. México, DF, México. Pp 198–230. 2000.

CÁRDENAS-PEREA, M. E.; CRUZ Y LÓPEZ, O.R.; GÁNDARA-RAMÍREZ, J.L.; PÉREZ-HERNÁNDEZ, M.A. Factores de virulencia bacteriana: la “inteligencia” de las bacterias. Elementos. 21(94): 35–43. 2014.

CARRANZA, C.; LEÓN, R.; FALCON, N.; NEUMANN, A.; KROMM, C. Caracterización y distribución de cepas de Escherichia coli potencialmente patógenas aisladas de pollos broiler de explotaciones avícolas en el Perú. Rev. Invest. Vet. Perú. 23 (2): 209–219. 2012.

CHEN, J.; GRIFFITHS, M. W. PCR differentiation of Escherichia coli from other gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett. in Appl. Microbiol. 27(6): 369–371. 1998. https://doi.org/j7b4

CLERMONT, O.; BONACORSI, S.; BINGEN, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66(10): 4555–4558. 2000. https://doi.org/ckvvd2.

DE CARLI, S.; IKUTA, N.; LEHMANN, F.K.; DA SILVEIRA, V.P.; DE MELO-PREDEBON, G.; FONSECA, A.S.; LUNGE, V.R. Virulence gene content in Escherichia coli isolates from poultry flocks with clinical signs of colibacillosis in Brazil. Poult. Sci. 94(11): 2635–2640. 2015. https://doi.org/j7b7.

EWERS, C.; LI, G.; WILKING, H.; KIESSLING, S.; ALT, K.; ANTÁO, E.M.; LATURNUS, C.; DIEHL, I.; GLODDE, S.; HOMEIER, T.; BÖHNKE, U.; STEINRÜCK, H.; PHILIPP, H.C.; WIELER, L.H. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int. J. Med. Microbiol. 297(3): 163–176. 2007. https://doi.org/dt5mjp.

EWERS, C., JANSSEN, T., KIESSLING, S., PHILIPP, H.C.; WIELER, L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 104(1–2): 91–101. 2004. https://doi.org/crj85b.

EWERS, C.; JANSSEN, T.; KIESSLING, S.; PHILIPP, H.C.; WIELER, L.H. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis. 49(2): 269–273. 2005. https://doi.org/ftdh7c.

GEVERS, D.; HUYS, G.; SWINGS, J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. F.E.M.S. Microbiol. Lett. 205: 31–36. 2001. En línea. https://doi.org/dxjm34.

GUILVOUT, I.; CARNIEL, E.; PUGSLEY, A.P. Yersinia spp. HMWP2, a cytosolic protein with a cryptic internal signal sequence which can promote alkaline phosphatase export. J. Bacteriol. 177(7): 1780–1787. 1995. En línea. https://doi.org/j7cd.

HUNTER, P.R.; GASTON, M.A. Numerical index of the discriminatory ability of typing systems: an application of Simpson´s index of diversity. J. Clin. Microbiol. 26: 2465–2466. 1998.

KHEIRI, R.; AKHTARI, L. Clonal Heterogeneity and Efficacy of BOX and (GTG)5 Fingerprinting Methods for Molecular Typing of Escherichia coli Isolated from Chickens in IRI. Kafkas Univ. Vet. Fakultesi Dergisi. 23 (2): 219–225. 2016. https://doi.org/j7cf.

KVINT, K.; NACHIN, L.; DIEZ, A.; NYSTRÖM, T. The bacterial universal stress protein: function and regulation. Curr. Opin. Microbiol. 6(2): 140–145. 2003. https://doi.org/brwr4v.

KWAGA, J.K.; ALLAN, B.J.; VAN DER HURK, J.V.; SEIDA, H.; POTTER, A. A carAB mutant of avian pathogenic Escherichia coli serogroup O2 is attenuated and effective as a live oral vaccine against colibacillosis in turkeys. Infect. Immun. 62(9): 3766–3772. 1994. https://doi.org/j7cg.

MÁRQUEZ-LÓPEZ, V.H; QUIROZ-SERRANO, I; MIRANDA-DELGADO, P.; VIDALES-RODRÍGUEZ, L.E.; SÁNCHEZ-RODRÍGUEZ, S.H.; LÓPEZ-LUNA, M.A.; FLORES DE LA T., A.; RAMÍREZ-SANTOYO, R.M. Genes de virulencia y grupo filogenético en aislados de Escherichia coli patogénica aviar. Arch. Med 14(1–2): 1–5. 2018.

MOHAMED, L.; GE, Z.; YUEHUA, L.; YUBIN, G.; RACHID, K.; MUSTAPHA, O.; JUNWEI, W.; KARINE, O. Virulence traits of avian pathogenic (APEC) and fecal (AFEC) E. coli isolated from broiler chickens in Algeria. Trop. Anim. Health Prod. 50(3): 547–553. 2018. https://doi.org/gc4tzj.

MOHAPATRA, B.R.; BROERSMA, K.; MAZUMDER, A. Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. F.E.M.S. Microbiol. Lett. 277(1): 98–106. 2007. https://doi.org/dnrksq.

MOHAPATRA, B.R.; BROERSMA, K.; MAZUMDER, A. Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)5-PCR genomic fingerprinting. Int. J. Med. Microbiol. 298(3–4): 245–252. 2008. https://doi.org/bhst6x.

MONTORO-DASI, L.; VILLAGRA, A.; SEVILLA-NAVARRO, S.; PÉREZ-GRACIA, M.T.; VEGA, S.; MARIN, C. The dynamic of antibiotic resistance in commensal Escherichia coli throughout the growing period in broiler chickens: fast-growing vs. slow-growing breeds. Poult. Sci. 99(3): 1591–1597. 2020. https://doi.org/j7ch.

MOSER, K.A.; ZHANG, L.; SPICKNALL, I.; BRAYKOV, N.P.; LEVY, K., MARRS, C.F.; EISENBERG, J.N. The role of mobile genetic elements in the spread of antimicrobial-resistant Escherichia coli from chickens to humans in small-scale production poultry operations in rural Ecuador. Amer. J. Epidemiol. 187(3): 558-567. 2018. https://doi.org/gc65wm.

NOLAN, L.K.; VAILLANCOURT, J.P.; BARBERIE, N.L.; LOGUE, C. “Colibacillosis”. Diseases of Poultry, 14th. Ed. Section II, Chapter 18. Pp 770–830. 2020.

NYSTRÖM, T.; NEIDHARDT, F. C. Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli. Molec. Microbiol. 6(21): 3187–3198. 1992. En línea. https://doi.org/czcmjf.

OZAKI, H.; MATSUOKA, Y.; NAKAGAWA, E.; MURASE, T. Characteristics of Escherichia coli isolated from broiler chickens with colibacillosis in commercial farms from a common hatchery. Poult. Sci. 96(10): 3717–3724. 2017. https://doi.org/gbh9vh.

OLIVEIRA, E.; BORZI, M.; BORGUES, C.; GUASTALLI, E.; AVILA, F. Highly Pathogenic and multidrug Resistant Avian Pathogenic Escherichia coli in Free-Range Chickens from Brazil. Brazilian J. Poult. Sci. 21: 1–8. 2018. https://doi.org/j7c9.

PAIXÃO, A.C.; FERREIRA, A.C.; FONTES, M.; THEMUDO, P.; ALBUQUERQUE, T.; SOARES, M.C.; FEVEREIRO, M.; MARTINS, L.; DE SÁ, M. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poult. Sci. 95(7): 1646–1652. 2016. https://doi.org/f8sxfh.

RASSCHAERT, G.; HOUF, K.; IMBERECHTS, H.; GRIJSPEERDT, K.; DE ZUTTER, L.; HEYNDRICKX, M. Comparison of five repetitive-sequence-based PCR typing methods for molecular discrimination of Salmonella enterica isolates. J. Clin. Microbiol. 43(8): 3615–3623. 2005. https://doi.org/dpk5tb.

RODRÍGUEZ-ANGELES, G. Principales características y diagnóstico de los grupos patógenos de Escherichia coli. Salud Públ. México. 44: 464–475. 2002. https://bit.ly/3KWyy2I. 08/01/2023

SVEC, P., VANCANNEYT, M., SEMAN, M., SNAUWAERT, C., LEFEBVRE, K., SEDLÁCEK, I., SWINGS, J. Evaluation of (GTG)5-PCR for identification of Enterococcus spp. F.E.M.S. Microbiol. Lett. 247(1): 59–63. 2005. https://doi.org/bd2d3t.

VAN DER WESTHUIZEN, W.A.; BRAGG, R.R. Multiplex polymerase chain reaction for screening avian pathogenic Escherichia coli for virulence genes. Avian Pathol. J. W.V.P.A. 41(1): 33–40. 2012. https://doi.org/j7db.

VINUEZA-BURGOS, C.; ORTEGA-PAREDES, D.; NARVÁEZ, C.; DE ZUTTER, L.; ZURITA, J. Characterization of cefotaxime resistant Escherichia coli isolated from broiler farms in Ecuador. PloS One. 14(4): e0207567. 2012. https://doi.org/gqwggq.

YOUNIS, G.; AWAD, A.; MOHAMED, N. Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Vet. World. 10(10): 1167–1172. 2017. https://doi.org/j7dc.

Published
2023-04-28
How to Cite
1.
Astudillo-Riera FM, Astudillo-Vallejo KF, Pérez-Pintado AC, Vallecillo AJ, Rivera-Pirela SE, Pesántez-Vallejo JP. Determination of genetic diversity and characterization of genes associated with virulence from Escherichia coli isolates in poultry (Gallus gallus domesticus), Azuay, Ecuador. Rev. Cient. FCV-LUZ [Internet]. 2023Apr.28 [cited 2024Nov.28];33(1):1-. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/40037
Section
Veterinary Medicine