Mycosorb A+® as a mycotoxin adsorbent in the diet on health and production in guinea pigs

  • Edwin James Fernández-Fuentes Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Bernardo Roque-Huanca Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Regina Sumari-Machaca Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Edgar Octavio Roque-Huanca Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Heber Nehemias Chui-Betancur Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Katia Pérez-Argollo Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
Keywords: guinea pigs, Fungi, mycotoxins, Mycosorb A ®, yeast, zearalenone

Abstract

Food intended for animals is contaminated by filamentous fungi that produce mycotoxins. The research objective was to evaluate the effect of Mycosorb A+® as a mycotoxin adsorbent in the diet on the health, production and economic benefit of commercially raised guinea pigs. A 80 growing guinea pigs of the Peru breed were used, between males and females, weighing 435.5 ± 35.5 grams (g), randomly distributed into two feeding groups: diet with Mycosorb A+® (experimental) and diet without Mycosorb A+® (control), carried out in the district of Ilabaya-Tacna, Peru, at an altitude of 1,425 meters, for 57 days. The diet was made with ground alfalfa hay, yellow corn, wheat bran, soybean meal, whole soybean meal, and sources of minerals and vitamins, offered for ad libitum consumption, plus 12.5 g·day-1 of fresh alfalfa (H° 78 %) by guinea pig. The results indicate that all the variables evaluated, except dry matter intake, were significant (P<0.05): morbidity 2.5 vs. 35.0 %; dry matter intake, 59.8 ± 2.1 vs. 58.0 ± 2.4 g·day-1 ; live weight gain, 9.7 ± 1.4 vs. 7.8 ± 0.9 g·day-1 ; feed conversion, 6.3 ± 0.9 vs. 7.5 ± 0.6; and benefit-cost ratio, 1.52 vs. 1.35, respectively. It is concluded that the inclusion of Mycosorb A+® as a mycotoxin adsorbent in the diet has a positive effect on health, production and economic benefit in the commercial breeding of guinea pigs.

Downloads

Download data is not yet available.

References

ABOUZAHR, C.; MIKKELSEN, L.; RAMPATIGE, R.; LOPEZ, A. Mortality statistics: a tool to improve understanding and quality. In Health Information Systems 13(1): 1–34. 2010. En línea: https://bit.ly/3KhuATF. 25/05/2022.

AKANDE, K.E.; ABUBAKAR, M.M.; ADEGBOLA, T.A.; BOGORO, S.E. Nutritional and Health Implications of Mycotoxins in Animal Feeds: A Review. Pakistan J. Nutr. 5(5): 398–403. 2006. https://doi.org/dbwvhc.

AKBARI, P.; BRABER, S.; VARASTEH, S.; ALIZADEH, A.; GARSSEN, J.; FINK-GREMMELS, J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 91(1): 1007–1029. 2017. https://doi.org/f9x5mb.

ALSHANNAQ, A.; YU, J. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Publ. Health. 14(632): 1–20. 2017. https://doi.org/gbkxkq.

ALLTECH®, Mycosorb A+® Aditivo antimicotoxinas. 2020. Alltech. Suplemento informativo. EUA. En línea: https://bit.ly/3XKn0nJ. 24/01/2021.

ANATER, A. Mycotoxins And Their Consequences In Aquaculture: A Review. Aquacult. 451(1): 1–10. 2016. https://doi.org/jxck.

ATANDA, S.A.; PESSU, P.O.; AGODA, S.; ISONG, I.U.; ADEKALU, O.A; ECHENDU, M. A.; FALADE, T.C. Fungi and mycotoxins in stored foods. Afr. J. Microbiol. Res. 5(25): 4373–4382. 2011. https://doi.org/dq58cw.

ATROSHI, F.; RIZZO, A.; WESTERMARCK, T.; ALI-VEHMAS, T. Antioxidant nutrients and mycotoxins. Toxicol. 180(1): 151–167. 2002.

AYAGIRWE, R.B.B.; MEUTCHIEYE, F.; MANJELI, Y.; MAASS, B.L. Production systems, phenotypic and genetic diversity, and performance of cavy reared in sub-saharan Africa. Livest. Res. Rural Develop. 30(6): 1–11. 2018.

BENNETT, J.W.; KLICH, M. Mycotoxins. Clin. Microb. Rev. 16(3): 497–516. 2003. https://doi.org/b5hqkc.

BEZERRA, M.E.; OLIVEIRA, F.; FEITOSA, F.; FLORINDO, M.; RONDINA, D. Mycotoxins and their effects on human and animal health. Food Contr. 36(1): 159–165. 2014. https://doi.org/jxcm.

CHAUDHARY, J.K.; SINGH, B.; PRASAD, S.; VERMA, M.R. Analysis of morbidity and mortality rates in bovine in Himachal Pradesh. Vet. World. 6(9): 614–619. 2013. https://doi.org/jxcn.

CHIOU, P.W.; YU, B.; KUO, C. Comparison of digestive function among rabbits, guinea-pigs, rats and hamsters. I. Performance, digestibility and rate of digesta passage. Asian-Aus. J. Anim. Sci. 13(11): 1499–1507. 2000. https://doi.org/jxcp.

CLOUTIER, M.L. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10(6198): 1–14. 2020. https://doi.org/jxcq.

DENLI, M.; BLANDON, J.C.; SALADO, S.; GUYNOT, M.E.; PÉREZ, J.F. Effect of dietary zearalenone on the performance, reproduction tract and serum biochemistry in young rats. J. Appl. Anim. Res. 45(1): 619–622. 2017. https://doi.org/jxct.

DEFRANCE, S.D. The sixth toe: The modern culinary role of the guinea pig in southern Peru. Food and Foodways 14(1): 3–34. 2006. https://doi.org/fqj2mv.

DI GREGORIO, M.C. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 33(3): 125–135. 2014. https://doi.org/gncv6w.

EUROPEAN FOOD SAFETY AUTHORITY (EFSA). Scientific opinion on the risks for public health related to the presence of zearalenone in food. Efsa J. 9(6): 1–124. 2011. https://doi.org/gkzv5m.

FRADETTE, K.; KESELMAN, H.J.; ALGINA, J.; LIX, L.; WILCOX, R.R. Conventional and robust paired and independent-samples t tests: Type I error and power rates. J. Modern Appl. Stat. Meth. 2(2): 481–496. 2003. https://doi.org/gn8sfw.

FUMAGALLI, F.; OTTOBONI, M.; PINOTTI, L.; CHELI, F. Integrated mycotoxin management system in the feed supply chain: Innovative approaches. Toxins. 13(572): 1–35. 2021. https://doi.org/jxcx.

GALVANO, F.; PIVA, A.; RITIENI, A.; GALVANO, G. Dietary Strategies to Counteract the Effects of Mycotoxins: A Review. J. Food Prot. 64(1): 120–131. 2001. https://doi.org/gqcjw4.

HAFNER, D. Individual and combined effects of feed artificially contaminated with with fumonisin B 1 and T-2 toxin in weaned rabbits. World Mycotoxin J. 9(4): 613–622. 2016. https://doi.org/f9dzb9.

HASTANG, W.N.; ASNAWI, A.; DARYATMO, W.N.; MEIDIANA, T. Analysis of the gross profit margin of broiler in the closed house at the Faculty of Animal Science – Hasanuddin University. IOP Conference Series: Earth Environm. Sci. 788(1): 12-23. 2021. https://doi.org/jxcz.

HIDY, P. H.; BALDWIN, R. S.; GREASHAM, R. L.; KEITH, C. L.: MCMULLEN, J. R. Zearalenone and Some Derivatives: Production and Biological Activities. Adv. Appl. Microb. 22(1): 59–82. 1977. https://doi.org/drqt72.

IHESHIULOR, O.O.M.; ESONU, B.O.; CHUWUKA, O.K.; OMEDE, A.A.; OKOLI, I.C.; OGBUEWU, I.P. Effects of mycotoxins in animal nutrition. A review. Asian J. Anim. Sci. 5(1): 19–33. 2011. https://doi.org/b7g5rs.

KARARLI, T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16(1): 351–380. 1995. https://doi.org/bf8f3m.

KIPYEGEN, C.; MULEKE, C.I.; OTACHI, E.O. Human and animal fasciolosis: Coprological survey in Narok, Baringo and Kisumo cointies, Kenya. Onderstepoort J. Vet. Res. 89(1): 19–54. 2022. https://doi.org/jxc2.

KOWALSKA, K.; HABROWSKA-GÓRCZY, D.E.; PIASTOWSKA-CIESIELSKA, A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 48(1): 141–149. 2016. https://doi.org/f9h5gd.

LEÓN, C.C. Evaluación de la rentabilidad económica y financiera de la implementación de una granja de cuy (Cavia porcellus) para realizar turismo rural en el pago de Azángaro Grande – Huanta. Universidad Nacional de Huancavelica. Perú. Tesis de Maestria. 96 pp. 2018. En línea: https://bit.ly/3IdfYC6. 18/06/2022.

LESZCZYŃSKA, J.; MASŁOWSKA, J.; OWCZAREK, A.; KUCHARSKA, U. Determination of aflatoxins in food products by the ELISA method. Czech. J. Food Sci. 19(1): 8–12. 2018. https://doi.org/jxc3.

LIAPIS, K.J.; KANTIANIS, D.D. Depreciation methods and life-cycle costing (LCC) methodology. Proc. Econ. Fin. 19(1): 314–324. 2015. https://doi.org/jxc4.

LIU, J.; APPLEGATE, T. Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxico kinetics, Toxicity and Estrogene city. Toxins. 12(377): 1–21. 2020. https://doi.org/gh5xw8.

LI, X. Occurrence of mycotoxins in feed ingredients and complete feeds obtained from the Beijing region of China. J. Anim. Sci. Biotechnol. 5(37): 1–8. 2014. https://doi.org/jxc5.

LOPEZ, E. Guinea Pigs-Small livestock with big potential. Ileia. 2014. En línea: https://bit.ly/3ElRG7X. 28/07/2022.

LUZI, A.; COMETA, M.F.; PALMERY, M. Acute effects of aflatoxins on guinea pig isolated ileum. Toxicol. in Vitro. 16(1): 525–529. 2002. https://doi.org/cqkw94.

MAHUKU, G.H.; NZIOKI, S.; MUTEGI, C.; KANAMPIU, F.; NARROD, C.; MAKUMBI, D. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Food Contr. 96(1): 219–226. 2019. https://doi.org/jxc6.

MARIN, S.; RAMOS, A.J.; SANCHIS, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 60(1): 218–237. 2013. https://doi.org/f5ccws.

MARRS, T.C.; EDGINTON, J.A.G.; PRICE, P.N.; UPSHALL, D.G. Acute toxicity of T2 mycotoxin to the guinea-pig by inhalation and subcutaneous routes, Br. J. Exp. Pathol. 67(1): 259–268. 1986. En línea: https://bit.ly/3Zlvtir. 28/07/2022.

MATTHIESEN, T.; NYAMETE, F.; MSUYA, J.M.; MAASS, B.L. Importance of cavy husbandry for the livelihood of rural people in Tanzania-A case study in Iringa Region. Develop. on the Margin. 1(1): 5–7. 2011.

MAYULU, H.; TOPAN, E.A.; HARIS, M.I.; DARU, T.P. Evaluation of dry matter intake and average daily gain of beef cattle in Samarinda city. J. Southwest Jiaotong Univ. 56(1): 165–175. 2021. https://doi.org/jxc8.

MCHUGH, M.L. The odds ratio: calculation, usage, and interpretation. Bioch. Med. 19(2): 120–126. 2009. https://doi.org/gftc4c.

MÍNGUEZ, C.; CALVO, A. Effect of supplementation with fresh orange pulp (Citrus sinensis) on mortality, growth performance, slaughter traits and sensory characteristics in meat guinea pigs. Meat Sci. 145(1): 51–54. 2018. https://doi.org/c65x.

MÍNGUEZ, C.; CALVO, A.; ZEAS, V.A.; SÁNCHEZ, D.A. comparison of the growth performance, carcass traits, and behavior of guinea pigs reared in wire cages and floor pens for meat production. Meat Sci. 152(1): 38–40. 2019. https://doi.org/jxc9.

MORALES, E. The guinea pig in the Andean economy: From household animal to market commodity. LatinAme. Res. Rev. 29(3): 129–142. 1989. En línea: https://bit.ly/3YKK7j2. 28/07/2022.

NAKAVUMA, J.L.; KIRABO, A.; BOGERE, P.; NABULIME, M.M.; KAAYA, A.N.; GNONLONFIN, D.B. Awareness of mycotoxins and occurrence of aflatoxins in poultry feeds and feed ingredients in selected regions of Uganda. Int. J. Food Contam. 7(1): 1–10. 2020. https://doi.org/gqxqsz.

NETKE, S.P.; ROOMI, M.W.; TSAO, C.; NIEDZWIECKI, A. Ascorbic acid protects guinea pigs from acute aflatoxin toxicity. Tox. Appl. Pharm. 143(2): 429–435. 1997. https://doi.org/crj5xm.

NOONARI, S.; MEMON, M.I.N.; KOLACHI, M.A.; CHANDIO, A.A.; WAGAN, S.A., SETHAR, A.A.; KALWAR, G.Y.; BHATTI, M.A.; KOREJO, A.S.; PANHWAR, G.M. Economic analysis of poultry production in Tando Allahyar district Sindh. J. Econ. Sustent. Develop. 6(3): 118–130. 2015. https://doi.org/jxdb.

NUTRITIONAL RESEARCH COUNCIL (NRC). Nutrient Requirements of Laboratory Animals. 4th. Rev. Washington D.C.: National Academies of Sciences. Pp 1–2. 1995.

OMARA, T.; KIPROP, A.K., WANGILA, P.; WACOO, A.P.; KAGOYA, S.; NTEZIYAREMYE, P.; ODERO, M.P.; KIWANUKA, C.; BAKER, S. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020). J. Food Qual. 2021: 1–8. 2021. https://doi.org/jxdc.

PARK, D.L.; NJAPAU, H.; BOUTRIF, E. Minimizing risks posed by mycotoxins utilizing the HACCP concept. FAO Food Nutr. Agricult. J. 23(1): 49–55. 1999.

PATIENCE, J.F.; ROSSONI-SERÃO, M.C.; GUTIÉRREZ, N.A. A review of feed efficiency in swine: Biology and application. J. Anim. Sci. Biotechnol. 6(33): 1–9. 2015. https://doi.org/gk7z4z.

PRAPAPANPONG, J.; UDOMKUSONSRI, P.; MAHAVORASIRIKUL, W.; CHOOCHUAY, S.; TANSAKUL, N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J. Adv. Vet. Anim. Res. 6(1): 125–132. 2019. https://doi.org/jxdd.

ROBERT, H.; PAYROS, D.; PINTON, P.; THÉODOROU, V.; MERCIER-BONIN, M. OSWALD, I.P. Impact of mycotoxins on the intestine: are mucus and microbiota new targets?. J. Toxicol. Environm. Health. 1(1): 1–27. 2017. https://doi.org/jxdf.

ROSEMBERG, H.A.; MONAHAN, C.; KENNELLY, J. Medidas de asociación en Epidemiología. Analytic Methods in Maternal and Child Health. Pp. 69. 1998.

ROPEJKO, K.; WARUŻEK, M. Zearalenone and its metabolites—General overview, occurrence, and toxicity. Toxins. 13(35): 1–12. 2021. https://doi.org/ghs5sw.

SAKI, A.; RAHMANI, A.; MAHMOUDI, H.; TABATABAEI, M.M.; ZAMANI, P.; KHOSRAVI, A.R. The ameliorative effect of mycosorb in aflatoxin contaminated diet of broiler chickens. J. Livest. Sci. Tech. 6(1): 39–47. 2018. https://doi.org/jxdg.

SARMA, P.; RAHA, S.; JØRGENSEN, H. An economic analysis of beef cattle fattening in selected areas of Pabna and Sirajgonj Districts. J. the Bangladesh Agric. University. 12(1): 127–134. 2014. https://doi.org/jxdh.

SMITH, J.E. Mycotoxins and Poultry Management. Worlds Poult. Sci. J. 38(3): 201–212. 1982. https://doi.org/fr5bfm.

SELVARAJ. J.N. Mycotoxin detection – Recent trends at global level. J. Integr. Agric. 14(11): 2265–2281. 2015. https://doi.org/f7zvw4.

SOARE, E.; CHIURCIU, I.A.; BĂLAN, A.V.; DAVID, L. World Market Research on Maize. Agricult. for Life, Life for Agricult. Conference Proceed. 1(1): 216–222. 2018. https://doi.org/jxdj.

SSERUMAGA, J.P.; ORTEGA-BELTRAN, A.; WAGACHA, J.M.; MUTEGI, C.K.; BANDYOPADHYAY, R. Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Int. J. Food Microbiol. 313(1): 108376. 2020. https://doi.org/gnptn7.

SZUMILAS, M. Statistical question: Explaining Odds Ratios. J. Can. Acad. Child. Adolesc. Psychiatry. 19(3): 227–229. 2010. https://doi.org/dc9sbw.

SUN, Y.; PARK, I.; GUO, J.; WEAVER, A.C.; KIM, S.W. Impacts of low level aflatoxin in feed and the use of modified yeast cell wall extract on growth and health of nursery pigs. Anim. Nutr. 1(3): 177–183. 2015. https://doi.org/jxdk.

THORNTON, P.K. Livestock production: Recent trends, future prospects, Philosophical Transactions of the Royal Society. Biol. Sci. 365(1): 2853–2867. 2010. https://doi.org/b63ght.

THURSTON, J.R.; BAETZ, A.L.; CHEVILLE, N.F.; RICHARD, J.L. Acute aflatoxicosis in guinea pigs: sequential changes in serum proteins, complement, C4, and liver enzymes and histopathologic changes. Am. J. Vet. Res. 41(8): 1272–1276. 1980.

VARTIAINEN, S.; YIANNIKOURIS, A.; APAJALAHTI, J.; MORAN, C.A. Comprehensive Evaluation of the Efficiency of Yeast Cell Wall Extract to Adsorb Ochratoxin A and Mitigate Accumulation of the Toxin in Broiler Chickens. Toxin. 12(37): 1–19. 2020. https://doi.org/jxdm.

WEAVER, A.C.; SEE, M.T.; KIM, S.W. Protective Effect of Two Yeast Based Feed Additives on Pigs Chronically Exposed to Deoxynivalenol and Zearalenone. Toxin. 6(1): 3336–3353. 2014. https://doi.org/gcfnws.

WITKOWSKA, A. The effects of diet on anatomy, physiology and health in the Guinea Pig. J. Anim. Health Behavio. Sci. 11(1): 1–6. 2017.

XU, R.; KIARIE, E.G.; YIANNIKOURIS, A.; SUN, L.; KARROW, N.A. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J. Anim. Sci. Biotech. 13(69): 1–19. 2022. https://doi.org/jxdn.

YUSUF, T.M.; TIAMIYU, S.A.; ALIU, R.O. Financial analysis of poultry production in Kwara State, Nigeria. Afr. J. Agric. Res. 11(8): 718–723. 2016. https://doi.org/jxdp.

ZAIN, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15(1): 129–144. 2011. https://doi.org/dndfjm.

ZINEDINE, A.; SORIANO, J.M.; MOLTÓ, J.C.; MAÑES, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 45(1): 1–18. 2007. https://doi.org/fjz26g.

Published
2023-02-26
How to Cite
1.
Fernández-Fuentes EJ, Roque-Huanca B, Sumari-Machaca R, Roque-Huanca EO, Chui-Betancur HN, Pérez-Argollo K. Mycosorb A+® as a mycotoxin adsorbent in the diet on health and production in guinea pigs. Rev. Cient. FCV-LUZ [Internet]. 2023Feb.26 [cited 2024Dec.22];33(1):1-. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/39789
Section
Animal Production