Mycosorb A+® como adsorbente de micotoxinas en la dieta sobre la salud y la producción en cuyes

  • Edwin James Fernández-Fuentes Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Bernardo Roque-Huanca Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Regina Sumari-Machaca Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Edgar Octavio Roque-Huanca Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Heber Nehemias Chui-Betancur Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
  • Katia Pérez-Argollo Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación Fundo Carolina. Puno, Perú
Palabras clave: Cuyes, hongos, micotoxinas, Mycosorb A ®, levaduras, zearalenona

Resumen

Los alimentos destinados a los animales están contaminados por hongos filamentosos que producen micotoxinas. El estudio tuvo como objetivo evaluar el efecto de Mycosorb A+® como adsorbente de micotoxinas en la dieta sobre la salud, producción y beneficio económico de cuyes en crianza comercial. Se utilizaron 80 cuyes en crecimiento de la raza Perú, entre machos y hembras, con un peso de 435,5 ± 35,5 gramos (g), distribuidos al azar en dos grupos de alimentación: dieta con Mycosorb A+® (experimental) y dieta sin Mycosorb A+® (control), realizado en el distrito de Ilabaya-Tacna, Perú, a 1.425 metros de altitud, durante 57 días. La dieta se elaboró con heno molido de alfalfa, maíz amarillo, afrecho de trigo, torta de soya, harina integral de soya y fuentes de minerales y vitaminas, ofrecida para consumo ad libitum, más 12,5 g·día-1 de alfalfa fresca (H° 78 %) por cuy. Los resultados indican que todas las variables evaluadas, excepto el consumo de materia seca, fueron significativas (P<0,05): morbilidad 2,5 vs. 35,0 %; consumo de materia seca, 59,8 ± 2,1 vs. 58,0 ± 2,4 g·día-1; ganancia de peso vivo, 9,7 ± 1,4 vs. 7,8 ± 0,9 g·día-1; conversión alimenticia, 6,3 ± 0,9 vs. 7,5 ± 0,6; y relación beneficio-costo, 1,52 vs. 1,35, respectivamente. Se concluye que la inclusión de Mycosorb A+® como adsorbente de micotoxinas en la dieta tiene efecto positivo en la salud, producción y beneficio económico en la crianza comercial de cuyes.

Descargas

La descarga de datos todavía no está disponible.

Citas

ABOUZAHR, C.; MIKKELSEN, L.; RAMPATIGE, R.; LOPEZ, A. Mortality statistics: a tool to improve understanding and quality. In Health Information Systems 13(1): 1–34. 2010. En línea: https://bit.ly/3KhuATF. 25/05/2022.

AKANDE, K.E.; ABUBAKAR, M.M.; ADEGBOLA, T.A.; BOGORO, S.E. Nutritional and Health Implications of Mycotoxins in Animal Feeds: A Review. Pakistan J. Nutr. 5(5): 398–403. 2006. https://doi.org/dbwvhc.

AKBARI, P.; BRABER, S.; VARASTEH, S.; ALIZADEH, A.; GARSSEN, J.; FINK-GREMMELS, J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 91(1): 1007–1029. 2017. https://doi.org/f9x5mb.

ALSHANNAQ, A.; YU, J. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Publ. Health. 14(632): 1–20. 2017. https://doi.org/gbkxkq.

ALLTECH®, Mycosorb A+® Aditivo antimicotoxinas. 2020. Alltech. Suplemento informativo. EUA. En línea: https://bit.ly/3XKn0nJ. 24/01/2021.

ANATER, A. Mycotoxins And Their Consequences In Aquaculture: A Review. Aquacult. 451(1): 1–10. 2016. https://doi.org/jxck.

ATANDA, S.A.; PESSU, P.O.; AGODA, S.; ISONG, I.U.; ADEKALU, O.A; ECHENDU, M. A.; FALADE, T.C. Fungi and mycotoxins in stored foods. Afr. J. Microbiol. Res. 5(25): 4373–4382. 2011. https://doi.org/dq58cw.

ATROSHI, F.; RIZZO, A.; WESTERMARCK, T.; ALI-VEHMAS, T. Antioxidant nutrients and mycotoxins. Toxicol. 180(1): 151–167. 2002.

AYAGIRWE, R.B.B.; MEUTCHIEYE, F.; MANJELI, Y.; MAASS, B.L. Production systems, phenotypic and genetic diversity, and performance of cavy reared in sub-saharan Africa. Livest. Res. Rural Develop. 30(6): 1–11. 2018.

BENNETT, J.W.; KLICH, M. Mycotoxins. Clin. Microb. Rev. 16(3): 497–516. 2003. https://doi.org/b5hqkc.

BEZERRA, M.E.; OLIVEIRA, F.; FEITOSA, F.; FLORINDO, M.; RONDINA, D. Mycotoxins and their effects on human and animal health. Food Contr. 36(1): 159–165. 2014. https://doi.org/jxcm.

CHAUDHARY, J.K.; SINGH, B.; PRASAD, S.; VERMA, M.R. Analysis of morbidity and mortality rates in bovine in Himachal Pradesh. Vet. World. 6(9): 614–619. 2013. https://doi.org/jxcn.

CHIOU, P.W.; YU, B.; KUO, C. Comparison of digestive function among rabbits, guinea-pigs, rats and hamsters. I. Performance, digestibility and rate of digesta passage. Asian-Aus. J. Anim. Sci. 13(11): 1499–1507. 2000. https://doi.org/jxcp.

CLOUTIER, M.L. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10(6198): 1–14. 2020. https://doi.org/jxcq.

DENLI, M.; BLANDON, J.C.; SALADO, S.; GUYNOT, M.E.; PÉREZ, J.F. Effect of dietary zearalenone on the performance, reproduction tract and serum biochemistry in young rats. J. Appl. Anim. Res. 45(1): 619–622. 2017. https://doi.org/jxct.

DEFRANCE, S.D. The sixth toe: The modern culinary role of the guinea pig in southern Peru. Food and Foodways 14(1): 3–34. 2006. https://doi.org/fqj2mv.

DI GREGORIO, M.C. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 33(3): 125–135. 2014. https://doi.org/gncv6w.

EUROPEAN FOOD SAFETY AUTHORITY (EFSA). Scientific opinion on the risks for public health related to the presence of zearalenone in food. Efsa J. 9(6): 1–124. 2011. https://doi.org/gkzv5m.

FRADETTE, K.; KESELMAN, H.J.; ALGINA, J.; LIX, L.; WILCOX, R.R. Conventional and robust paired and independent-samples t tests: Type I error and power rates. J. Modern Appl. Stat. Meth. 2(2): 481–496. 2003. https://doi.org/gn8sfw.

FUMAGALLI, F.; OTTOBONI, M.; PINOTTI, L.; CHELI, F. Integrated mycotoxin management system in the feed supply chain: Innovative approaches. Toxins. 13(572): 1–35. 2021. https://doi.org/jxcx.

GALVANO, F.; PIVA, A.; RITIENI, A.; GALVANO, G. Dietary Strategies to Counteract the Effects of Mycotoxins: A Review. J. Food Prot. 64(1): 120–131. 2001. https://doi.org/gqcjw4.

HAFNER, D. Individual and combined effects of feed artificially contaminated with with fumonisin B 1 and T-2 toxin in weaned rabbits. World Mycotoxin J. 9(4): 613–622. 2016. https://doi.org/f9dzb9.

HASTANG, W.N.; ASNAWI, A.; DARYATMO, W.N.; MEIDIANA, T. Analysis of the gross profit margin of broiler in the closed house at the Faculty of Animal Science – Hasanuddin University. IOP Conference Series: Earth Environm. Sci. 788(1): 12-23. 2021. https://doi.org/jxcz.

HIDY, P. H.; BALDWIN, R. S.; GREASHAM, R. L.; KEITH, C. L.: MCMULLEN, J. R. Zearalenone and Some Derivatives: Production and Biological Activities. Adv. Appl. Microb. 22(1): 59–82. 1977. https://doi.org/drqt72.

IHESHIULOR, O.O.M.; ESONU, B.O.; CHUWUKA, O.K.; OMEDE, A.A.; OKOLI, I.C.; OGBUEWU, I.P. Effects of mycotoxins in animal nutrition. A review. Asian J. Anim. Sci. 5(1): 19–33. 2011. https://doi.org/b7g5rs.

KARARLI, T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos. 16(1): 351–380. 1995. https://doi.org/bf8f3m.

KIPYEGEN, C.; MULEKE, C.I.; OTACHI, E.O. Human and animal fasciolosis: Coprological survey in Narok, Baringo and Kisumo cointies, Kenya. Onderstepoort J. Vet. Res. 89(1): 19–54. 2022. https://doi.org/jxc2.

KOWALSKA, K.; HABROWSKA-GÓRCZY, D.E.; PIASTOWSKA-CIESIELSKA, A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 48(1): 141–149. 2016. https://doi.org/f9h5gd.

LEÓN, C.C. Evaluación de la rentabilidad económica y financiera de la implementación de una granja de cuy (Cavia porcellus) para realizar turismo rural en el pago de Azángaro Grande – Huanta. Universidad Nacional de Huancavelica. Perú. Tesis de Maestria. 96 pp. 2018. En línea: https://bit.ly/3IdfYC6. 18/06/2022.

LESZCZYŃSKA, J.; MASŁOWSKA, J.; OWCZAREK, A.; KUCHARSKA, U. Determination of aflatoxins in food products by the ELISA method. Czech. J. Food Sci. 19(1): 8–12. 2018. https://doi.org/jxc3.

LIAPIS, K.J.; KANTIANIS, D.D. Depreciation methods and life-cycle costing (LCC) methodology. Proc. Econ. Fin. 19(1): 314–324. 2015. https://doi.org/jxc4.

LIU, J.; APPLEGATE, T. Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxico kinetics, Toxicity and Estrogene city. Toxins. 12(377): 1–21. 2020. https://doi.org/gh5xw8.

LI, X. Occurrence of mycotoxins in feed ingredients and complete feeds obtained from the Beijing region of China. J. Anim. Sci. Biotechnol. 5(37): 1–8. 2014. https://doi.org/jxc5.

LOPEZ, E. Guinea Pigs-Small livestock with big potential. Ileia. 2014. En línea: https://bit.ly/3ElRG7X. 28/07/2022.

LUZI, A.; COMETA, M.F.; PALMERY, M. Acute effects of aflatoxins on guinea pig isolated ileum. Toxicol. in Vitro. 16(1): 525–529. 2002. https://doi.org/cqkw94.

MAHUKU, G.H.; NZIOKI, S.; MUTEGI, C.; KANAMPIU, F.; NARROD, C.; MAKUMBI, D. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. Food Contr. 96(1): 219–226. 2019. https://doi.org/jxc6.

MARIN, S.; RAMOS, A.J.; SANCHIS, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 60(1): 218–237. 2013. https://doi.org/f5ccws.

MARRS, T.C.; EDGINTON, J.A.G.; PRICE, P.N.; UPSHALL, D.G. Acute toxicity of T2 mycotoxin to the guinea-pig by inhalation and subcutaneous routes, Br. J. Exp. Pathol. 67(1): 259–268. 1986. En línea: https://bit.ly/3Zlvtir. 28/07/2022.

MATTHIESEN, T.; NYAMETE, F.; MSUYA, J.M.; MAASS, B.L. Importance of cavy husbandry for the livelihood of rural people in Tanzania-A case study in Iringa Region. Develop. on the Margin. 1(1): 5–7. 2011.

MAYULU, H.; TOPAN, E.A.; HARIS, M.I.; DARU, T.P. Evaluation of dry matter intake and average daily gain of beef cattle in Samarinda city. J. Southwest Jiaotong Univ. 56(1): 165–175. 2021. https://doi.org/jxc8.

MCHUGH, M.L. The odds ratio: calculation, usage, and interpretation. Bioch. Med. 19(2): 120–126. 2009. https://doi.org/gftc4c.

MÍNGUEZ, C.; CALVO, A. Effect of supplementation with fresh orange pulp (Citrus sinensis) on mortality, growth performance, slaughter traits and sensory characteristics in meat guinea pigs. Meat Sci. 145(1): 51–54. 2018. https://doi.org/c65x.

MÍNGUEZ, C.; CALVO, A.; ZEAS, V.A.; SÁNCHEZ, D.A. comparison of the growth performance, carcass traits, and behavior of guinea pigs reared in wire cages and floor pens for meat production. Meat Sci. 152(1): 38–40. 2019. https://doi.org/jxc9.

MORALES, E. The guinea pig in the Andean economy: From household animal to market commodity. LatinAme. Res. Rev. 29(3): 129–142. 1989. En línea: https://bit.ly/3YKK7j2. 28/07/2022.

NAKAVUMA, J.L.; KIRABO, A.; BOGERE, P.; NABULIME, M.M.; KAAYA, A.N.; GNONLONFIN, D.B. Awareness of mycotoxins and occurrence of aflatoxins in poultry feeds and feed ingredients in selected regions of Uganda. Int. J. Food Contam. 7(1): 1–10. 2020. https://doi.org/gqxqsz.

NETKE, S.P.; ROOMI, M.W.; TSAO, C.; NIEDZWIECKI, A. Ascorbic acid protects guinea pigs from acute aflatoxin toxicity. Tox. Appl. Pharm. 143(2): 429–435. 1997. https://doi.org/crj5xm.

NOONARI, S.; MEMON, M.I.N.; KOLACHI, M.A.; CHANDIO, A.A.; WAGAN, S.A., SETHAR, A.A.; KALWAR, G.Y.; BHATTI, M.A.; KOREJO, A.S.; PANHWAR, G.M. Economic analysis of poultry production in Tando Allahyar district Sindh. J. Econ. Sustent. Develop. 6(3): 118–130. 2015. https://doi.org/jxdb.

NUTRITIONAL RESEARCH COUNCIL (NRC). Nutrient Requirements of Laboratory Animals. 4th. Rev. Washington D.C.: National Academies of Sciences. Pp 1–2. 1995.

OMARA, T.; KIPROP, A.K., WANGILA, P.; WACOO, A.P.; KAGOYA, S.; NTEZIYAREMYE, P.; ODERO, M.P.; KIWANUKA, C.; BAKER, S. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020). J. Food Qual. 2021: 1–8. 2021. https://doi.org/jxdc.

PARK, D.L.; NJAPAU, H.; BOUTRIF, E. Minimizing risks posed by mycotoxins utilizing the HACCP concept. FAO Food Nutr. Agricult. J. 23(1): 49–55. 1999.

PATIENCE, J.F.; ROSSONI-SERÃO, M.C.; GUTIÉRREZ, N.A. A review of feed efficiency in swine: Biology and application. J. Anim. Sci. Biotechnol. 6(33): 1–9. 2015. https://doi.org/gk7z4z.

PRAPAPANPONG, J.; UDOMKUSONSRI, P.; MAHAVORASIRIKUL, W.; CHOOCHUAY, S.; TANSAKUL, N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J. Adv. Vet. Anim. Res. 6(1): 125–132. 2019. https://doi.org/jxdd.

ROBERT, H.; PAYROS, D.; PINTON, P.; THÉODOROU, V.; MERCIER-BONIN, M. OSWALD, I.P. Impact of mycotoxins on the intestine: are mucus and microbiota new targets?. J. Toxicol. Environm. Health. 1(1): 1–27. 2017. https://doi.org/jxdf.

ROSEMBERG, H.A.; MONAHAN, C.; KENNELLY, J. Medidas de asociación en Epidemiología. Analytic Methods in Maternal and Child Health. Pp. 69. 1998.

ROPEJKO, K.; WARUŻEK, M. Zearalenone and its metabolites—General overview, occurrence, and toxicity. Toxins. 13(35): 1–12. 2021. https://doi.org/ghs5sw.

SAKI, A.; RAHMANI, A.; MAHMOUDI, H.; TABATABAEI, M.M.; ZAMANI, P.; KHOSRAVI, A.R. The ameliorative effect of mycosorb in aflatoxin contaminated diet of broiler chickens. J. Livest. Sci. Tech. 6(1): 39–47. 2018. https://doi.org/jxdg.

SARMA, P.; RAHA, S.; JØRGENSEN, H. An economic analysis of beef cattle fattening in selected areas of Pabna and Sirajgonj Districts. J. the Bangladesh Agric. University. 12(1): 127–134. 2014. https://doi.org/jxdh.

SMITH, J.E. Mycotoxins and Poultry Management. Worlds Poult. Sci. J. 38(3): 201–212. 1982. https://doi.org/fr5bfm.

SELVARAJ. J.N. Mycotoxin detection – Recent trends at global level. J. Integr. Agric. 14(11): 2265–2281. 2015. https://doi.org/f7zvw4.

SOARE, E.; CHIURCIU, I.A.; BĂLAN, A.V.; DAVID, L. World Market Research on Maize. Agricult. for Life, Life for Agricult. Conference Proceed. 1(1): 216–222. 2018. https://doi.org/jxdj.

SSERUMAGA, J.P.; ORTEGA-BELTRAN, A.; WAGACHA, J.M.; MUTEGI, C.K.; BANDYOPADHYAY, R. Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Int. J. Food Microbiol. 313(1): 108376. 2020. https://doi.org/gnptn7.

SZUMILAS, M. Statistical question: Explaining Odds Ratios. J. Can. Acad. Child. Adolesc. Psychiatry. 19(3): 227–229. 2010. https://doi.org/dc9sbw.

SUN, Y.; PARK, I.; GUO, J.; WEAVER, A.C.; KIM, S.W. Impacts of low level aflatoxin in feed and the use of modified yeast cell wall extract on growth and health of nursery pigs. Anim. Nutr. 1(3): 177–183. 2015. https://doi.org/jxdk.

THORNTON, P.K. Livestock production: Recent trends, future prospects, Philosophical Transactions of the Royal Society. Biol. Sci. 365(1): 2853–2867. 2010. https://doi.org/b63ght.

THURSTON, J.R.; BAETZ, A.L.; CHEVILLE, N.F.; RICHARD, J.L. Acute aflatoxicosis in guinea pigs: sequential changes in serum proteins, complement, C4, and liver enzymes and histopathologic changes. Am. J. Vet. Res. 41(8): 1272–1276. 1980.

VARTIAINEN, S.; YIANNIKOURIS, A.; APAJALAHTI, J.; MORAN, C.A. Comprehensive Evaluation of the Efficiency of Yeast Cell Wall Extract to Adsorb Ochratoxin A and Mitigate Accumulation of the Toxin in Broiler Chickens. Toxin. 12(37): 1–19. 2020. https://doi.org/jxdm.

WEAVER, A.C.; SEE, M.T.; KIM, S.W. Protective Effect of Two Yeast Based Feed Additives on Pigs Chronically Exposed to Deoxynivalenol and Zearalenone. Toxin. 6(1): 3336–3353. 2014. https://doi.org/gcfnws.

WITKOWSKA, A. The effects of diet on anatomy, physiology and health in the Guinea Pig. J. Anim. Health Behavio. Sci. 11(1): 1–6. 2017.

XU, R.; KIARIE, E.G.; YIANNIKOURIS, A.; SUN, L.; KARROW, N.A. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J. Anim. Sci. Biotech. 13(69): 1–19. 2022. https://doi.org/jxdn.

YUSUF, T.M.; TIAMIYU, S.A.; ALIU, R.O. Financial analysis of poultry production in Kwara State, Nigeria. Afr. J. Agric. Res. 11(8): 718–723. 2016. https://doi.org/jxdp.

ZAIN, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 15(1): 129–144. 2011. https://doi.org/dndfjm.

ZINEDINE, A.; SORIANO, J.M.; MOLTÓ, J.C.; MAÑES, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 45(1): 1–18. 2007. https://doi.org/fjz26g.

Publicado
2023-02-26
Cómo citar
1.
Fernández-Fuentes EJ, Roque-Huanca B, Sumari-Machaca R, Roque-Huanca EO, Chui-Betancur HN, Pérez-Argollo K. Mycosorb A+® como adsorbente de micotoxinas en la dieta sobre la salud y la producción en cuyes. Rev. Cient. FCV-LUZ [Internet]. 26 de febrero de 2023 [citado 29 de marzo de 2024];33(1):1-. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/39789
Sección
Producción Animal