Phenotypic and molecular characterization of colifages from broiler farms with Colibacilosis and poultry processing plants from Azuay, Ecuador

  • Fabián Astudillo-Riera Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria y Zootecnia. Cuenca, Ecuador - Universidad de Zulia, Facultad de Ciencias Veterinarias. Maracaibo, Venezuela
  • Kevin Astudillo-Vallejo Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria y Zootecnia. Cuenca, Ecuador
  • Maria Laura Gómez-Asanza Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria y Zootecnia. Cuenca, Ecuador
  • Luis Armando Pacha-Aguilar Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria y Zootecnia. Cuenca, Ecuador
  • Antonio Javier Vallecillo-Maza Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Escuela de Medicina Veterinaria y Zootecnia. Cuenca, Ecuador - Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Laboratorio de Biología Molecular. Cuenca, Ecuador
  • Sergio Emiro Rivera-Pirela Universidad de Zulia, Facultad de Ciencias Veterinarias. Maracaibo, Venezuela
Keywords: Coliphages, biocontrol, RFLP, E. coli, resistance

Abstract

Extraintestinal pathogenic Escherichia coli, termed E. coli avian pathogenic possess specific virulence attributes causing invasive infections in poultry, namely Colibacillosis. Veterinarians have limited options of antimicrobial agents for its treatment, due to problems of bacterial resistance of E. coli that indirectly affects human health. As an alternative, the use of bacteriophages with specific bacteriolytic power against enteropathogenic bacteria is proposed. The objective of this study was to characterize lytic bacteriophages specific for E. coli (coliphages) as a biocontrol alternative against avian Colibacillosis, determining their specificity against enteropathogenic E. coli isolated from the area, their lytic capacity, phenotype and genotype. For this, semi-solid environmental samples were collected from poultry slaughterhouses and from wastewater in production farms. With the samples, it was proceeded to isolate the plaques formed by the bacteriophages with the best apparent lytic activity against E. coli TOP10F' and on the previously characterized pathogenic E. coli isolates. A total of 36 coliphage isolates were tested against 10 pathogenic strains of E. coli. Of these, 22 phages affected between 10–50 % of the strains evaluated, 5 phages infected between 60 and 70 % and only 9 phages did not show lytic capacity against pathogenic E. coli strains. The phages with the highest lytic capacity were selected and genotypically characterized by the Restriction Fragment Length Polymorphism (RFLP) technique, after treatment with restriction enzymes: BamHI, EcoRI, EcoRV and Hind III. As a result, 4 coliphages with different band patterns were obtained. It is concluded that a wide variety of coliphages with lytic potential for the biocontrol of pathogenic E. coli can be isolated from environmental samples of poultry farms diagnosed with Colibacillosis.

Downloads

Download data is not yet available.

References

ADRIAENSSENS, E.M.; BRISTER, J. Rodney. How to name and classify your phage: an informal guide. Viruses. 9 (4): 70. 2017.

BAO, H.; ZHANG, H.; WANG, R. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum. Poult. Sci. 90(10): 2370–2377. 2011.

BARROW, P.; LOVELL, M.; BERCHIERI, A. J.R. Use of lytic bacteriophages for the control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Vaccine Immunol. 5: 294–298. 1998.

BERCHIERI, A.; LOVELL, M.A.; BARROW, P.A. The activity in the chicken alimentary tract of lytic bacteriophage for Salmonella typhimurium. Res. Microbiol. 142: 541–549. 1991.

BRU-RONDA, C.; VAZQUEZ, M.; LOPEZ, R. Bacteriophages as a tool to combat infections in Aquaculture. Aqua TIC. 18: 3–10. 2003.

COLLIGNON, P.; WEGENER, H.C.; BRAAM, P.; BUTLER, C.D. The routine use of antibiotics to promote animal growth does little to benefit protein undernutrition in the developing world. Clin. Infect. Dis. 41: 1007–1013. 2005.

D'HERELLE F. Sur un microbe invisible antagonista des Bacilles dysentériques. CR. Acad. Sci. 165: 373–375. 1917.

DIZ, O. Técnicas de biología molecular en el diagnóstico de enfermedades infecciosas. NPunto. III (30): 88–111. 2020.

EATON, M.D.; BAYNE-JONES, S. Bacteriophage therapy. Review of the principles and results of the use of bacteriophages in the treatment of infections. J.A.M.A. 23: 1769–1939. 1934.

EGAS-VIVERO, P.R. Caracterización fenotípica y genotípica del bacteriófago 5Q18 activo contra Escherichia coli enteropatógena multirresistente. Ecuador. Red de Repositorios Latinoamericanos. 2006-2018. Tesis de Grado. Pp. 62. 2016

ESMAT, M. M.; ABDELHAMID, A. G.; ABO-ELMAATY, S. A.; NASR-ELDIN, M. A.; HASSAN, M. G.; KHATTAB, A. A.; ESMAEL, A. Antibiotics and phage sensitivity as interventions for controlling Escherichia coli isolated from clinical specimens. J. Pure Appl. Microbiol. 11(4): 1749–1755. 2017.

FAIZA, A.F.; HESHAM M. S.; SAHAR, M.W. PCR-based DNA Fingerprinting Analysis of Coliphages Isolated from Sewage Polluted Seawater in Alexandria. Pakistan J. Biolog. Sci. 5(9): 938–42. 2002.

FUHRMAN, J.A.; SCHWALBACH, M. Viral influence on aquatic bacterial communities. Biol. Bull. 204(2): 192–195. 2017.

GDOURA-BEN AMOR, M.; CULOT, A.; TECHER, C.; ALRESHIDI, M.; ADNAN, M.; JAN, S.; GAUTIER, M. Isolation, Partial characterization and application of bacteriophages in eradicating biofilm formation by Bacillus cereus on stainless steel surfaces in food processing facilities. Pathog. 11(8): 872. 2022.

HATFULL, G.F.; HENDRIX, R.W. Bacteriophages and their genomes. Curr. Opin. Virol. 1(4): 298–303. 2022.

HERRERA-ESCOBEDO, M.D.; TRUJILLO-CASTRO, M.A. Aislamiento y caracterización biológica de bacteriófagos con actividad lítica sobre las bacterias Escherichia coli y Salmonella spp. Red de Repositorios Latinoamericanos. Universidad de Sonora. Tesis de Grado. Pp 89. 2016.

HUDSON, J. A.; BILLINGTON, C.; CAREY-SMITH, G.; GREENING, G. Bacteriophages as Biocontrol Agents in Food. J. Food Protect. 68(2): 426–437. 2005.

HUFF, W. E.; HUFF, G. R.; RATH, N. C.; BALOG, J. M.; DONOGHUE, A. M. Bacteriophage treatment of a severe Escherichia coli respiratory infection in broiler chickens. Avian Dis. 47(4): 1399–1405. 2003.

HUFF, W.E.; HUFF, G.R.; RATH, N.C.; BALOG, J.M.; DONOGHUE, A.M. Prevention of Escherichia coli infection in broilers with an aerosol of bacteriophage. Poult. Sci. 81: 1486–1491. 2002.

HUFF, W.E.; HUFF, G.R.; RATH, N.C.; BALOG, J.M.; DONOGHUE, A.M. Evaluation of aerosol and intramuscular injection of bacteriophages to treat respiratory Escherichia coli infection. Poult. Sci. 82: 1108–1112. 2003.

KULIKOV, E. E.; GOLOMIDOVA, A. K.; LETAROVA, M. A.; KOSTRYUKOVA, E. S.; ZELENIN, A. S.; PROKHOROV, N. S.; LETAROV, A. V. Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. Viruses. 6(12): 5077–5092. 2014.

KUTTER, E.; SULAKVELIDZE, A. Phage for the Detection of Pathogenic Bacteria. Bacteriophages: Biology and applications. 1st. Ed. Crc Press, Boca de Raton. Pp 1–4. 2004.

LÓPEZ-CUEVAS, O.; CASTRO-DEL CAMPO, N.; LEÓN-FÉLIX, J.; GONZÁLEZ-ROBLES, A.; CHAIDEZ, C. Characterization of bacteriophages with a lytic effect on various Salmonella serotypes and Escherichia coli O157:H7. Can. J. Microbiol. 57(12): 1042–1051. 2011.

MA, J.; LIU, J.H.; LUCHAO, L.; ZONG, Z.; SUN, Y.; ZHENG, H.; CHEN, Z.; ZENG, Z.L. Characterization of extended-spectrum β-lactamase genes found among Escherichia coli isolates from duck and environmental samples obtained on a duck farm. Appl. Environ. Microbial. 76(10): 3668–3673. 2012.

MATTHIJS, M.G.; ARIAANS, M.P.; DWARS, R.M.; VAN ECK, J.H.; BOUMA, A.; STEGEMAN, A.; VERVELDE, L. Course of infection and immune responses in the respiratory tract of IBV infected broilers after superinfection with E. coli. Vet. Immunol. Immunopathol. 127(1): 77–84. 2019.

MCGRATH, S.; SINDEREN, D.V. Bacteriophage as a Model Genetic System. Bacteriophage: Genetics and Molecular Biology. 3rd. Ed. Caister Academic Press. New York. Pp 137–172. 2007.

MCKELLAR, Q.A.; SANCHEZ-BRUNI, S.F.; JONES, D.G. Pharmacokinetic / pharmacodynamic relationships of antimicrobial drugs used in Veterinary Medicine. J. Vet. Pharmacol. Ther. 27(6): 503–514. 2004.

MELLATA, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 10: 916–932. 2013.

MIRSKI, T.; MIZAK, L.; NAKONIECZNA, A.; GRYKO, R. Bacteriophages, phage endolysins and antimicrobial peptides – the possibilities for their common use to combat infections and in the design of new drugs. Ann. Agric. Environ. Med. 26(2): 203–209. 2019.

MOYE, Z.D.; WOOLSTON, J.; SULAKVELIDZE, A. Bacteriophage Applications for Food Production and Processing. Viruses. 10(4): 205. 2018.

OLIVEIRA, A.; SILLANKORVA, S.; QUINTA, R.; HENRIQUES, A.; SERENO, R.; AZEREDO, J. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J. Appl. Microbiol. 106(6): 1919–1927. 2009.

ORLOVA, E.V. Bacteriophages and Their Structural Organisation. Bacteriophages Perspective and Future. Sava, R. (Ed.). United Kingdom. Pp 5–30. 2012.

OSAWA, S.; FURUSE, K.; WATANABE, I. Distribution of ribonucleic acid coliphages in animals. Appl. Environ. Microbiol. 41(1): 164–168. 1981.

PARK, S.C.; SHIMAMURA, I.; FUKUNAGA, M.; MORI, K.I.; NAKAI, T. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol. 66: 1416-1422. 2000.

RAKIETEN, T.L.; RAKIETEN, M.L. Bacteriology in the developing chick embryo. J. Bact. 45: 477–484. 1943.

SHIKARA, M. Identification of a restriction endonuclease (SacC1) from Saccharomyces cerevisiae. J. Yeast Fungal Res. 1(7): 127–135. 2010.

SKLAR, I.B.; JOERGER, R.D. Attempts to use bacteriophages to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Safety. 21: 15–29. 2001.

SMITH, H.W.; HUGGINS, M.B. Successful treatment of experimental Escherichia coli infections in mice using phages: their general superiority over antibiotics. J. Genet. Microbiol. 128: 307–318. 1982.

SMITH, H.W.; HUGGINS, M.B.; SHAW, K.M. Control of experimental Escherichia coli diarrhea in calves by means of bacteriophages. J. Gen. Microbiol. 133: 1111–1126. 1987.

SPELLBERG, B. The future of antibiotics. Crit. Care. 18(3): 228. 2014.

SPELLBERG, B.; GILBERT, D.N. The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clin. Infect. Dis. 59 (Suppl 2): S71–S75. 2014.

SULAKVELIDZE, A.; ALAVIDZE, Z.; MORRIS, J.G. Bacteriophage Therapy Antimicrob. Agents. Chemother. 45(3): 649–659. 2001.

SULAKVELIDZE, A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens J. Sci. Food. Agric. 93: 3137–3146. 2013.

WONG-GONZÁLEZ, A. Purificación y caracterización biológica del bacteriófago uB-19 específico de Bacillus thuringiensis. Universidad Autónoma de Nuevo León. Tesis Doctoral. Pp 25–47.1994.

Published
2023-02-21
How to Cite
1.
Astudillo-Riera F, Astudillo-Vallejo K, Gómez-Asanza ML, Pacha-Aguilar LA, Vallecillo-Maza AJ, Rivera-Pirela SE. Phenotypic and molecular characterization of colifages from broiler farms with Colibacilosis and poultry processing plants from Azuay, Ecuador. Rev. Cient. FCV-LUZ [Internet]. 2023Feb.21 [cited 2024Dec.22];33(1):1-. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/39775
Section
Veterinary Medicine