Caracterización bioquímica y filogrupos de Escherichia coli aislados de heces de terneros con diarrea en la Región Cajamarca, Perú

  • Marco Cabrera-González Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario, Estación Experimental Baños del Inca. Baños del Inca, Cajamarca, Perú
  • Sámy Káterin Chávez-Díaz Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario, Estación Experimental Baños del Inca. Baños del Inca, Cajamarca, Perú
  • Rodolfo Gustavo Gamarra-Ramírez Universidad Nacional de Cajamarca, Facultad de Ciencias Veterinarias, Laboratorio de Microbiología Veterinaria. Cajamarca, Cajamarca, Perú
  • Héctor Vladimir Vásquez Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario. La Molina, Lima, Perú
  • Carlos Quilcate-Pairazamán Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario. La Molina, Lima, Perú
  • Medali Cueva-Rodríguez Instituto Nacional de Innovación Agraria (INIA), Dirección de Desarrollo Tecnológico Agrario, Estación Experimental Baños del Inca. Baños del Inca, Cajamarca, Perú
Palabras clave: Escherichia coli, Clermont, caracterización, filogrupos

Resumen

Esta investigación tuvo por objetivo la caracterización bioquímica y la identificación de filogrupos en cepas de Escherichia coli, de heces de terneros con diarrea, mediante el método de Clermont. Se recogieron treinta y dos muestras de ocho rebaños del caserío Tartar Grande, distrito Baños del Inca, región Cajamarca, Perú. Mediante el crecimiento en agar MacConkey-MUG fueron seleccionadas trece muestras caracterizándose bioquímicamente mediante kit EnteroPluri®-Test e identificadas molecularmente mediante amplificación del gen uidA mediante la técnica de reacción en cadena de la polimerasa (PCR); se tipificó el filogrupo por PCR cuádruplex de Clermont. Las cepas locales aisladas mostraron un perfil bioquímico fermentadoras de sorbitol y glucosa permitiendo agruparlas e identificarlas en cinco grupos (códigos 71340; 71350; 51340; 61740 y 61340); además se amplificó el gen uidA que codifica la enzima beta-glucuronidasa propias del linaje de E. coli. La identificación del grupo filogenético permitió observar que están agrupadas en el grupo B1 (69,23 %), F (15,38 %), además los grupos A (7,69 %) y D o E (7,69 %) se distribuyen proporcionalmente en todas las muestras analizadas, se logró mediante amplificación de los genes arpA, chuA, yjaA, TspE4.C2. Las cepas locales aisladas de heces de terneros con diarrea representan poblaciones bacterianas naturalizadas y adaptadas al nicho ecológico de Cajamarca, teniendo la ganadería regional como principal fuente de alimentación las pasturas, posiblemente la contaminación de estas se traduce en un importante medio de transmisión en terneros para la presentación de colibacilosis, ya que estas cepas albergan la mayor proporción de genes de virulencia.

Descargas

La descarga de datos todavía no está disponible.

Citas

ACRES, S.D. Enterotoxigenic Escherichia coli infections in newborn calves: a review. J. Dairy Sci. 68: 229-256. 1985. https://doi.org/ftjjkp.

ALTERI, C. J.; MOBLEY, H. L. T. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Current Opinion in Microbiol. 15(1): 3. 2012. https://doi.org/fzmb34.

ASIM, K.; BEJ, J.L.; DICESARE, J.L,; HAFF, L.; ATLAS, R.M. Detection of Escherichia coli and Shigella spp. in Water by Using the Polymerase Chain Reaction and Gene Probes for uid. Appl. Environ. Microbiol. 57: 1013-1017. 1991.

BAUWENS, A.; MAREJKOVÁ, M.; MIDDENDORF-BAUCHART, B.; PRAGER, R.; KOSSOW, A.; ZHANG, W.; KARCH, H.; MELLMANN, A., BIELASZEWSKA, M. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H− Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates Appl. Environ. Microbiol. 83(23): e01454-17. 2017. https://doi.org/hwwb.

BIELASZEWSKA, M.; SCHMITD, H.; LIESEGANG, A.; PRAGER, R.; RABSCH, W.; TSCHÄPE , H.; CIZEK, A.; JANDA, J.; BLAHOVA, K.; KARCH, H. Cattle can be a reservoir of sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H strains and a source of human diseases. J. Clin. Microbiol. 38(9): 3470-3473. 2000.

BINGEN, E; PICARD, B; BRAHIMI, N; MATHY, S; DESJARDINS, P; ELION, J; DENAMUR, E. Phylogenetic Analysis of Escherichia coli Strains Causing Neonatal Meningitis Suggests Horizontal Gene Transfer from a Predominant Pool of Highly Virulent B2 Group Strains. J. Infect. Dis. 177(3): 642-650. 1998. https://doi.org/cx5fvw.

BRENNAN, F.P.; O’FLAHERTY, V.; KRAMERS, G.; GRANT, J.; RICHARDS, K.G. Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl. Environ. Microbiol. 76: 1449-1455. 2010. https://doi.org/dkcjms.

CHO, Y.I.; YOON, K.J. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15: 1–17. 2014. https://doi.org/f5wkwh.

CLERMONT, O.; CHRISTENSON, J.K.; DENAMUR, E.; GORDON, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. 5(1): 58-65. 2013. https://doi.org/f4nr28.

CLERMONT, O.; GORDON, D.; DENAMUR, E. Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiol. 161: 980-988. 2015. https://doi.org/hwwc.

CLERMONT, O.; OLIER, M.; HOEDE, C.; DIANCOURT, L.; BRISSE, S.; KEROUDEAN, M. Animal and human pathogenic Escherichia coli strains share common genetic backgrounds. Infect. Genet. Evol. 11(3): 654-662. 2011. https://doi.org/djjcq8.

CLERMONT, O; BONACORSI, S; BINGEN, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66(10):4555-4558. 2000. https://doi.org/ckvvd2.

CROXEN, M.A; LAW, R.J; SCHOLZ, R; KEENEY, K.M; WLODARSKA, M; FINLAY, B.B. Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clin. Microbiol. Rev. 26(4): 822-880. 2013. https://doi.org/f5fqmb.

DONALDSON, S.C; STRALEY, B.A; HEGDE, N.V.; SAWANT, A.A; DEBROY, C; JAYARAO, B.M. Molecular Epidemiology of Ceftiofur-Resistant Escherichia coli Isolates from Dairy Calves. Appl. Environ. Microbiol. 72(6): 3940-3948. 2006. https://doi.org/b4c2zm.

DOUMITH, M; DAY, M.J; HOPE, R; WAIN, J; WOODFORD, N. Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. J. Clin. Microbiol. 50(9): 3108-3110. 2012. https://doi.org/gmtgv2.

ESCOBAR-PÁRAMO, P.; LE MENAC’H, A.; LE GALL, T.; AMORIN, C.; GOURIOU, S.; PICARD, B.; SKURNIK, D.; DENAMUR, E. Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ. Microbiol. 8: 1975-1984. 2006. https://doi.org/dbfhsc.

FOSTER, D.M.; SMITH, G.W. Pathophysiology of diarrhea in calves. Vet. Clin. North Amer. Food Anim. Pract. 251: 13-36. 2009. https://doi.org/cpxrvm.

GHARIEB, R; FAWZI, E; ELSOHABY, I. Comparative Immunology, Microbiology and Infectious Diseases Antibiogram, virulotyping and genetic diversity of Escherichia coli and Salmonella serovars isolated from diarrheic calves and calf handlers. Comp. Immunol. Microbiol. Infec. Dis. 67: 101367. 2019. https://doi.org/gmxmjg.

GITANJALI, N.; TARREN, S.; TOBY, F.; MADHAV, N.; STEPHANUS, N.V.; VOLKER, S.B. Distribution of Diverse Escherichia coli between Cattle and Pasture. Microbes Environ. 32(3): 226-233. 2017. https://doi.org/hwwd.

GORDON, D. M; CLERMONT, O; TOLLEY, H; DENAMUR, E. Assigning Escherichia coli strains to phylogenetic groups: Multi-locus sequence typing versus the PCR triplex method. Environ. Microbiol. 10(10): 2484-2496. 2008. https://doi.org/bw2zcr.

HYMA, K.E; LACHER, D.W; NELSON, A.M; ALYSSA, C.; BUMBAUGH, J.; JANDA, M.; STROCBINE, N.A.; YOUNG, V.B.; WHITTAM, T.S. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 187: 619-628. 2005. https://doi.org/d437s3.

IQBAL, S.; ROBINSON, J.; DEERE, D.; SAUNDERS, J.R.; EDWARDS, C.; PORTER, J. Efficiency of the polymerase chain reaction amplification of the uid gene for detection of Escherichia coli in contaminated water. Lett. Appl. Microbiol. 24: 498-502. 1997. https://doi.org/bwvk65.

ISHII, S.; KSOLL, W.B.; HICKS, R.E.; SADOWSKY, M.J. Presence and growth of naturalized Escherichia coli in temperate soils from lake Superior watersheds. Appl. Environ. Microbiol. 72:612-621. 2006. https://doi.org/btp7n2.

JAUREGUY, F.; LANDRAUD, L.; PASSET, V.; DIANCOURT, L.; FRAPY, E.; GUIGON, G.; CARBONELLE, E.; LORTHOLARY, O.; CLERMONT, O.; DENAMUR, E.; PICARD, B.; NASSIF, X.; BRISSE, S. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics. 9: 560. 2008. https://doi.org/cx6jr3.

JOHNSON, J.R.; STELL, A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181(1): 261-72. 2000. https://doi.org/dqjh6j.

KAPER, J.B.; NATARO, J.P.; MOBLEY, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2:123–140. 2004. https://doi.org/bb2pfn.

KONNO, T; YATSUYANAGI, J; TAKAHASHI, S; KUMAGAI, Y. Isolation and Identification of Escherichia albertii from a Patient in an Outbreak of Gastroenteritis. Jpn. J. Infect. Dis. 65: 203-207. 2012. https://doi.org/f3zvj5.

LAINE, T.M; YLIAHO, M; ANTTILA, M. Risk factors for post-weaning diarrhoea on piglet producing farms in Finland. Acta. Vet. Scand. 11: 1-11. 2008. https://doi.org/c42tcr.

LARSON, A.; HARTINGER, S.M.; RIVEROS, M.; SALMON-MULANOVICH, G.; HATTENDORF, J.; VERASTEGUI, H.; DANIEL, M. Antibiotic-Resistant Escherichia coli in Drinking Water Samples from Rural Andean Households in Cajamarca, Peru. Am. J. Trop. Med. Hyg. 100(6): 1363-1368. 2019. https://doi.org/gntw49.

LE GALL, T.; CLERMONT, O.; GOURIOU, S.; PICARD, B.; NASSIF, X.; DENAMUR, E.; TENAILLON O. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol. Biol. Evol. 24: 2373-2384. 2007. https://doi.org/bv2rbn.

LEIMBACH, A.; HACKER, J.; DOBRINDT, U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol. 358: 3–32. 2013. https://doi.org/gj6h87.

LIU, S.; JIN, D.; LAN, R.; WANG, Y.; MENG, Q.; DAI, H.; LU, S.; HU, S.; XU, J. Escherichia marmotae spp. nov., isolated from faeces of Marmota himalayana. Int. J. Syst. Evol. Microbiol. 65: 2130-2134. 2015. https://doi.org/hwwh.

LUO, C.; WALK, S.T.; GORDON, D.M.; FELDGARDEN, M.; TIEDJE, J.M.; KONSTANTINIDIS, K.T. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. 108(17): 7200-7205. 2011. https://doi.org/cvhvmz.

MOISSENET, D.; SALAUZE, B.; CLERMONT, O.; BINGEN, E.; ARLET, G.; DENAMUR, E.; MÉRENS, A.; MITÁNCHEZ, D.; VU THIEN, H. Meningitis caused by Escherichia coli producing TEM-52 extended-spectrum beta-lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain. J. Clin. Microbiol. 48(7): 2459-2463. 2010. https://doi.org/cg7hsn.

NATARO, J.P.; KAPER, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11(1): 142-201. 1998.

O’SULLIVAN, J.; BOLTON, D. J.; DUFFY, G.; BAYLIS, C.; TOZZOLI, R.; WATESON, Y.; LOFDAHL, S. Methods for Detection and Molecular Characterization of Pathogenic Escherichia coli. 2006. Pathogenic E. coli Network. En línea: https://bit.ly/3t3LL1C. 25-05-2021.

OCHOA, T.J.; RUIZ, J., MOLINA, M.; DEL VALLE, L.J.; VARGAS, M.; GIL, A.I; LANATA, C.F. High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. Am. J. Trop. Med. Hyg. 81(2): 296-301. 2009. https://bit.ly/3auG32l.

ORTH, D.; GRIF, K.; DIERICH, M.P.; WÜRZNER, R. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: indications for an animal reservoir. Epidemiol. Infect. 134(4): 719-723. 2006. https://doi.org/d2dgv5.

PICARD, B.; GARCIA, J.S.; GOURIOU, S.; DURIEZ, P.; BRAHIMI, N.; BINGEN, E.; ELION, J.; DENAMUR, E. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect. Immun. 67:546–553. 1999.

PUPO, G.M.; KARAOLIS, D.K.; LAN, R. Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Reeves PR. Infect. Immun. 65(7): 2685-2692. 1997.

SERRANO, A.; SERRANO, J.J.; AYALA, D.; GUERRA, Y.; PADILLA, J.; TREJOS-SUÁREZ, J. Caracterización por PCR-múltiple del grupo filogenético de Escherichia coli uropatógena aisladas de pacientes ambulatorios de Bucaramanga, Santander. Rev. Fac. Cien Salud UDES. 3(1): 25. 2016. https://doi.org/hwwk.

TENAILLON, O.; SKURNIK, D.; PICARD, B.; DENAMUR, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8: 207-217. 2010. https://doi.org/fp93mr.

TEXIER, S.; PRIGENT-COMBARET, C.; GOURDON, M.H.; POIRIER, M.A.; FAIVRE, P.; DORIOZ, J.M.; POULENARD, J.; JOCTEUR‐MONROZIER, L.; MOËNNE‐LOCCOZ, Y.; TREVISAN, D. Persistence of culturable Escherichia coli fecal contaminants in dairy alpine gassland soils. J. Environ. Qual. 37: 2299-2310. 2008. https://doi.org/bw7m2q.

TORO, M.; RIVERA, D.; JIMÉNEZ, M.F.; DÍAZ, L.; NAVARRETE, P.; REYES-JARA, A. Isolation and characterization of non-O157 Shiga toxin-producing Escherichia coli (STEC) isolated from retail ground beef in Santiago, Chile. Food Microbiol. 75: 55-60. 2018. https://doi.org/hwwm.

UNNO, T.; HAN, D.; JANG, J.; LEE, S.N.; KO, G.; CHOI, H.Y.; KIM, J.H.; SADGOWSKY, M.J.; HUR, H.G. Absence of Escherichia coli phylogenetic group B2 strains in humans and domesticated animals from Jeonnam Province, Republic of Korea. Appl. Environ. Microbiol. 75(17): 5659-5666. 2009. https://doi.org/c8ms8v.

VOYTAS, D. Agarose gel electrophoresis. Curr. Protoc. Immunol. 2:10.4.1-10.4.8. 2001. https://doi.org/dd6p3z.

WALK, S.T.; ALM, E.W.; GORDON, D.M.; RAM, J.L.; TORANZOS, G.A.; TIEDJE, J.M.; WHITTAM, T.S. Cryptic lineages of the genus Escherichia. Appl. Environ. Microbiol. 75(20): 6534-6544. 2009. https://doi.org/b9p7h7.

WANG, H.H; MANUZON, M; LEHMAN, M; WAN, K; LUO, H; WITTUM, T. E; BAKALETZ, L. O. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes. FEMS. Microbiol. Lett. 254(2): 226-231. 2005. https://doi.org/fmkf6d.

WIRTH, T; FALUSH, D; LAN, R; COLLES, F; MENSA, P; WIELER, L.H; ACHTMAN, M. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 60(5): 1136–1151. 2006. https://doi.org/d5txqk.

ZIPPER, H.; BRUNNER, H.; BERNHAGEN, J.; VITZTHUM, F. Investigations on DNA intercalation and surface binding by SYBR green I, its structure determination and methodological implications. Nucleic Acids Res. 32(12): e103. 2004. https://doi.org/ffxknt.

Publicado
2022-06-01
Cómo citar
1.
Cabrera-González M, Chávez-Díaz SK, Gamarra-Ramírez RG, Vásquez HV, Quilcate-Pairazamán C, Cueva-Rodríguez M. Caracterización bioquímica y filogrupos de Escherichia coli aislados de heces de terneros con diarrea en la Región Cajamarca, Perú. Rev. Cient. FCV-LUZ [Internet]. 1 de junio de 2022 [citado 29 de marzo de 2024];32:1-10. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/38201
Sección
Medicina Veterinaria