A new immunochemistry process that transform a non-immunogenic crotamine-like antigen from rattlesnake (Crotalus durissus cumanensis) venom, in immunogenic to produce anti-crotamine-like antibodies.

Un nuevo proceso inmunoquímico que convierte crotamina del veneno de serpiente de cascabel (Crotalus durissus cumanensis), un antígeno no-inmunogénico, en inmunogénico para producir anticuerpos anti-crotamina.

  • María Magdalena Pulido-Mendez Universidad Central de Venezuela
  • María Eugenia Acosta Universidad Central de Venezuela
  • Alexis Rodríguez-Acosta Universidad Central de Venezuela
Keywords: Crotalus durissus cumanensis, crotamine-like, glutaraldehyde, polyclonal antibody, polymerisation, venom

Abstract

The making of antibodies in animals can be demanding due to that several antigens, mostly of low molecular masses, provoke imperceptible immune response or are even totally non-immunogenic. The transformation of non-immunogenic molecules into effective antigens represent an important immunological tasks. The crotamine from the rattlesnake Crotalus durissus cumanensis snake venom was purified by a Mono S HR 10/10 chromatography column and used to immunise C57/B mice, after to be polymerised with glutaraldehyde. The murine polyclonal antibodies directed against native crotamine-like (NCL) treated with glutaraldehyde and their product crotamine-like polymer (CLP) were generated by immunisation injecting CLP via lymph node cells. These antibodies were capable of detecting CLP in an enzyme-linked immunosorbent assay. The SDS-PAGE of NCL and CLP showed bands of molecular masses ~ 3 kDa and ~18 kDa, respectively. These results offer evidence that the polyclonal antibodies recognise specific putative original and post-polymerisation epitopes on the CLP molecule, which were maintained following the process of polymerisation. The results are discussed in relation to the preservation of a functional post-polymerisation epitopes on CLP.

Downloads

Download data is not yet available.

References

AVRAMEAS, S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochem. 6: 43–52. 1969.

AVRAMEAS, S.; TERNYNCK, T. Peroxidase labeled antibody and Fab conjugates with enhanced intracellular penetration. Immunochem. 8: 1175-1179. 1971.

BANCHEREAU, J.; PALUCKA, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5: 296–306. 2005.

BEAUCHAMP, R.A. Critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol. 22: 143-174. 1992.

BOLDRINI-FRANÇA, J.; CORRÊA-NETTO, C.; SILVA, M.M.; RODRIGUES, R.S.; DE LA TORRE, P.; PÉREZ, A.; SOARES, A.M.; ZINGALI, R.B.; NOGUEIRA, R.A.; RODRIGUES, V.M.; SANZ, L.; CALVETE, J.J. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J. Proteomics. 73: 1758–1776. 2010

COCIANCICH, S.; GOYFFON, M.; BONTEMS, F.; BULET, P.; BOUET, F.; MENEZ, A.; HOFFMANN, J. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 194:17-22. 1993.

CORONADO, M.A.; GABDULKHAKOV, A.; GEORGIEVA, D.; SANKARAN, B.; MURAKAMI, M.T.; ARNI, R.K.; BETZEL, C. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Acta. Crystallograph. 69: 1958–1964. 2013.

CORZO, G.; ESCOUBAS, P.; VILLEGAS, E.; BARNHAM, K.J.; HE, W.; NORTON, R.S.; NAKAJIMA, T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem. J. 359: 35–45. 2001.

FASOLD, H.; KLAPPENBERGER, J.; MEYER, C.; REMOLD, H. Bifunctional Reagents for the Crosslinking of Proteins. Angew. Chem. Int. Ed. Engl. 10: 795–801. 1971.

GONÇALVES, J.M,; ARANTES, E.G. Estudos sobre venenos de serpentes brasileiras III—Determinacao quantitativa de crotamina no veneno de cascavel Brasileira. An. Acad. Bras. Cien. 28: 369–371. 1956.

GONÇALVES, J.M.; POLSON, A. The electrophoretic analysis of snake venoms. Arch. Biochem. 13: 253–259. 1947.

GRIFFITH, I.P. The effect of cross-links on the mobility of proteins in dodecyl sulphate polyacrylamide gels. Biochem. J. 126:553–560. 1972.

HABEEB, A.F.S.A. Preparation of enzymically active, water- insoluble derivatives of trypsin. Arch. Biochem. Biophys. 119: 264-268. 1967.

HABEEB, A.F.S.A.; HIRAMOTO, R. Reactions of proteins with glutaraldehyde. Arch. Biochem. Biophys. 126:16– 26. 1968.

HOPWOOD, D. The effect of pH and various fixatives on isolated ox chromaffin granules with respect to the chromaffin reaction. J. Anat. 102:415–424. 1968.

HOPWOOD, D. A. Comparison of the crosslinking abilities of glutaraldehyde, formaldehyde and alpha- hydroxyadipaldehyde with bovine serum albumin and casein. Histochemie. 17:151–161. 1969.

JANSEN, E.F.; OLSON, A.C. Properties and enzymatic activities of papain insolubilized with glutaraldehyde. Biochem. Biophys. 129: 221-227. 1969.

KAYED, R.; HEAD, E.; THOMPSON, J.L.; McINTIRE, T.M.; MILTON, S.C.; COTMAN, C.W.; GLABE, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Sci. 300: 486–489. 2003.

KERKIS, I.; HAYASHI, M.A.; PRIETO DA SILVA, A.R.; PEREIRA, A.; DE SÁ- JÚNIOR, P.L.; ZAHARENKO, A.J,.;RÁDIS-BAPTISTA, G.; KERKIS, A.; YAMANE, T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed. Res. Int. 2014:675985. 2014.

LAMBERT, M.P.; VELASCO, P.T.; VIOLA, K.L.; KLEIN, W.L. Targeting generation of antibodies specific to conformational epitopes of amyloid beta-derived neurotoxins. CNS. Neurol. Disord. Drug Targets. 8: 65–81. 2009.

LAURE, C.J. Die primarstruktur des crotaminins Hoppe-Seyler’s Z. Physiol. Chem. 356: 213–215. 1975.

LEE, J.Y.; CHOI, Y.S.; SUH, J.S.; KWON, Y.M.; YANG, V.C.; LEE, S.J.; CHUNG, C.P.; PARK, Y.J. Cell-penetrating chitosan/doxorubicin/TAT conjugates for efficient cancer therapy. Int. J. Cancer. 128: 2470–2480. 2011.

LICHTENEGGER, F.S.; MUELLER, K.B.; OTTE, B.; BECK, B.; HIDDEMANN, W.; SCHENDEL, D.J.; SUBKLEWE, M. CD86 and IL-12p70 are key players for T helper 1 polarization and natural killer cell activation by Toll-like receptor-induced dendritic cells, PLoS. One. 7: e44266. 2012

LONGHI, C.; TRUMPFHELLER, M.P.; IDOYAGA, J.; CASKEY, M.; MATOS, I.; KLUGER, C.; SALAZAR, A.M.; COLONNA, M.; STEINMAN, R.M. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant, J. Exp. Med.206:1589–1602. 2009

OGUIURA, N.; CAMARGO, M.E.; SILVA, A.R.P.; DA HORTON, D.S.P.Q. Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel lines analysis. Toxicon. 38: 443–448. 2000.

OTTESEN, M.; SVENSSON, B. Modification of papain by treatment with glutaraldehyde under reducing and non- reducing conditions. CR. Trav. Lab. Carlsberg. 38:171-185. 1971.

PONCE-SOTO, L.A.; MARTINS, D.; NOVELLO, J.C.; MARANGONI, S. Structural and Biological Characterization of Two Crotamine Isoforms IV-2 and IV-3 Isolated from the Crotalus durissus cumanensis Venom. Protein. J. 26: 533- 540. 2007.

QUIOCHO, F.A.; RICHARDS, F.M. Intermolecular cross linking of a protein enzyme. Adv. Protein. Chem. 25: l-78. 1964.

QUIOCHO, F.A.; RICHARDS, F.M. The enzyme behaviour of carboxypeptidase A in the solid state. Biochem. 5: 4062- 4076. 1966.

SANTOS, M.C.; MORHY, L.; FERREIRA, L.C.L.; OLIVEIRA, E.B. Purification and properties of a crotamine analog from Crotalus durissus ruruima venom. Toxicon. 31: 166. 1993.

SCHEJTER, A.; BAR-ELI, A. Preparation and properties of crosslinked water insoluble catalase. Arch. Biochem. Biophys. 136: 325-330. 1970.

SCHENBERG, S. Geographical pattern of crotamine distribution in the same rattlesnake subspecies. Sci. 129: 1361–1363. 1959.

SHANKAR, G.M.; WALSH, D.M. Alzheimer’s disease: synaptic dysfunction and A-beta. Mol. Neurodegener. 4: 48-61. 2009.

SMITH, L.A.; SCHMIDT, J.J. Cloning and nucleotide sequences of crotamine genes. Toxicon. 28: 575–585. 1990.

STOSCHECK, C. M. Quantitation of protein, Meth. Enzymol. 182: 50–68. 1990.

TOYAMA, M.H.; CARNEIRO, E.M.; MARANGONI, S.; BARBOSA, R.L.; CORSO, G.; BOSCHERO, A.C. Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets. Biochim. Biophys. Acta. 1474: 56–60. 2000.

WESTON, P.D.; AVRAMEAS, S. Proteins coupled to polyacrylamide beads using glutaraldehyde. Biochem. Biophys. Res. Commun. 45:1574–1580. 1971.
Published
2021-05-18
How to Cite
1.
Pulido-Mendez MM, Acosta ME, Rodríguez-Acosta A. A new immunochemistry process that transform a non-immunogenic crotamine-like antigen from rattlesnake (Crotalus durissus cumanensis) venom, in immunogenic to produce anti-crotamine-like antibodies.: Un nuevo proceso inmunoquímico que convierte crotamina del veneno de serpiente de cascabel (Crotalus durissus cumanensis), un antígeno no-inmunogénico, en inmunogénico para producir anticuerpos anti-crotamina. Rev. Cient. FCV-LUZ [Internet]. 2021May18 [cited 2024May11];30(4):173-9. Available from: https://produccioncientificaluz.org/index.php/cientifica/article/view/35975
Section
Veterinary Medicine