Cambios histomorfométricos y nivel de colonización de Lactobacillus acidophillus y Kluyveromyces fragilis en diferentes segmentos tracto digestivo de cuyes (Cavia porcellus)
Resumen
El estudio tuvo como objetivo, evaluar la acción de los bioaditivos probióticos sobre los cambios histomorfometricos y nivel de colonización en diferentes segmentos de tracto digestivo en cuyes con 90 días (d) de edad. De manera aleatorizada se seleccionaron 80 cuyes de raza Kuri con 30 d de edad, 250 g de peso vivo, y se distribuyeron en cuatro grupos de 20 animales cada uno. Ctrl, Control. Bal, sustrato vinaza–melaza fermentado con Lactobacillus acidophilus. Lev, sustrato vinaza–melaza fermentado con Kluyveromyces fragilis. B+L, sustrato vinaza–melaza fermentado con L. acidophilus y K. fragilis. El Bal, Lev y B+L en su base contenía sustrato melaza – vinaza. Los parámetros evaluados fueron, lesiones macroscópico en los órganos del tracto digestivo, cambios morfométricos y microbiota del tracto digestivo. Los órganos del tracto digestivo en cuyes del grupo control presentaron mayor (P<0,05) cantidad de lesiones macroscópicas; las muestras el intestino, duodeno, yeyuno e ilion de los animales que consumieron probióticos presentaron mayor (P<0,05) longitud; similar situación presentó los cambios histomorfométricos de tejidos intestinales en cuyes con probióticos, la carga microbiana detectada a partir del hisopado rectal en los diferentes medios de cultivos con diferencias estadísticas significativas (P<0,05). Se concluye que la inclusión aditivo microbiano en los cuyes influyen en los cambios morfométricos sobre todo en la longitud y ancho de vellosidades intestinales, profundidad de criptas y relación longitud/profundidad a los 45 y 90 d de edad. Asimismo, se pudo verificar el nivel de colonización que realizan las cepas de los microorganismos beneficiosos en diferentes segmentos del tracto digestivo.
Descargas
Citas
Economou V, Gousia P. Agriculture and food animals as a source of antimicrobial–resistant bacteria. Infect. Drug. Resist. [Internet]. 2015; 8:49–61. doi: https://doi.org/gkkmzm
Alós JI. Resistencia bacteriana a los antibióticos: Una crisis global. Enferm. Infecc. Microbiol. Clin. [Internet]. 2015; 33(10):692–699. doi: https://doi.org/f2wkvd
Miranda–Yuquilema J, Taboada J, Once V, Coyago M, Briñez W. Effect of agroindustrial waste substrate fermented with lactic acid bacteria and yeast on changes in the gut microbiota of guinea pigs. Microorganisms [Internet]. 2024; 12(1):133. doi: https://doi.org/g8t3c4
Gatica–Eguiguren MA, Rojas H. Gestión sanitaria y resistencia a los antimicrobianos en animales de producción. Rev. Peru. Med. Exp. Salud Pública. [Internet]. 2018; 35(1):118–125. doi: https://doi.org/g8t3c5
Kamruzzaman SM, Kabir SML, Rahman MM, Islam MW, Reza MA. Effect of probiotics and antibiotic supplementation on body weight and haemato–biochemical parameters in broilers. Bangl. J. Vet. Med. [Internet]. 2005; 3(2):100–104. doi: https://doi.org/g8t3c6
Hou Q, Zhao F, Liu W, Lv R, Thwe–Khine WW, Han J, Sun Z, Lee YK, Zhang H. Probiotic directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes [Internet]. 2020; 12(1):1736974. doi: https://doi.org/gpxw6f
Ampuero–Riega J, Morales–Cauti S. Determinación de residuos de antibióticos en músculo, hígado y riñón de cuyes comercializados en cuatro ciudades del Perú. Rev. Investig. Vet. Perú [Internet]. 2021; 32(1):e19508. doi: https://doi.org/nv9g
Tellez G, Pixley C, Wolfenden RE, Layton SL, Hargis BM. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res. Int. [Internet]. 2012;45(2):628–633. doi: https://doi.org/bb3tgb
Ciro–Galeano JA, López–Herrera A, Parra–Suescún J. La adición de cepas probióticas modula la secreción de mucinas intestinales en íleon de cerdos en crecimiento. Rev. CES Med. Vet. Zootec. [Internet]. 2015 [consultado 12 May. 2024]; 10(2):150–159. Disponible en: https://goo.su/XK0Ejbe
Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi–Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R. Gut microbiota and obesity: A role for probiotics. Nutrients [Internet]. 2019; 11(11):2690. doi: https://doi.org/gmctqd
Ahmed ST, Hoon J, Hong–Seok M, Chul–Ju Y. Evaluation of Lactobacillus and Bacillus based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr. J. Microbiol. Res. [Internet]. 2014;8(1):96–104. doi: https://doi.org/g8t3c7
Gimeno–Forner L, Gimeno–Forner LO, Cejalvo–Lapeña D, Calvo–Bermúdez MA, Bolant–Hernández B, Lloris–Carsí JM. Anestesia en el Animal de Laboratorio. Parte 2 Valencia. Res. Surgery. [Internet]. 1990 [consultado 12 May. 2024]; (5):36–44. Disponible en: https://goo.su/nlRywgW
Miranda–Yuquilema JE, Marin–Cárdenas A, Valle–Cepeda A, Barros–Rodríguez M, Marrero–Suárez LI, Hidalgo–Almeida L, Rivera–Guerra V. Wastes of agroindustry an alternative to develop biopreparates with probiotic capacity. Trop. Subtrop. Agroecosyst. [Internet]. 2018;21(1):46–52. doi: https://doi.org/g8t3c8
Miranda–Yuquilema J, Taboada–Pico J, Briñez–Briñez W. Efecto de bioaditivos en indicadores bioproductivos de cobayas (Cavia porcellus) nulíparas y sus crías. Rev. MVZ Córdoba [Internet]. 2024;27(3): e2547. doi: https://doi.org/g8t3c9
National Research Council (NRC). Nutrient requirements of poultry.10th Rev. ed. Washington, DC: The National Academies; 2012. 450 p.
Cornejo–Espinoza JG, Rodríguez–Ortega LT, Pro–Martínez A, González–Cerón F, Conde–Martínez VF, Ramírez–Guzmán ME, López–Pérez E, Hernández–Cázares AS. Efecto del ayuno ante mortem en el rendimiento de la canal y calidad de la carne de conejo. Arch. Zootec. [Internet]. 2016 [consultado 12 Mar. 2024]; 65(250):171–175. Disponible en: https://goo.su/3R4NrA
Sánchez–Macías D, Cevallos–Velastegui L, Nuñez–Valle D, Morales–delaNuez A. First report of postmortem pH evolution and rigor mortis in guinea pigs. Livest. Sci. [Internet]. 2019; 229:22–27. doi: https://doi.org/g8t3db
Norma Oficial Mexicana. NOM–033–ZOO–1995, Sacrificio humanitario de los animales domésticos y silvestres [Internet]. Ciudad de México: Secretaría de Agricultura, Ganadería y Desarrollo Rural; 1996 [consultado 12 Mar. 2024]. 18 p. Disponible en: https://goo.su/NGhmLs
Mejía–Medina J, Rincón–Ruiz J, Gutiérrez–Vergara C, Correa–Londoño G, López–Herrera A, Parra–Suescún J. Valoración de parámetros clínicos y lesiones en órganos de cerdos durante el período posdestete. Acta Agron. [Internet] 2012; [consultado 12 Mar. 2024]; 61(1):61–68. Disponible en: https://goo.su/ozDzf
Mohamed MA, El–Daly EF, El–Azeem NA, Youssef A, Hassan HMA. Growth performance and histological changes in ileum and immune related organs of broilers fed organic acids or antibiotic growth promoter. Int. J. Poult. Sci. [Internet] 2014;13(10): 602–610. doi: https://doi.org/g8t3dc
Hayat MA. Principles and techniques of electron microscopy: biological applications. 4th ed. New York (USA): Cambridge University Press; 2000. 178 p.
Canal A, Cubillos V, Zamora J, Reinhardt G, Paredes E, Ildefonso R, Alberdi A. Lesiones macro y microscópicas de intestino delgado de cerdos neonatos sin calostrar inoculados experimentalmente con cepas de E. coli fimbriadas. Arch. Med. Vet. [Internet]. 1999; 31(1):69–79. doi: https://doi.org/d8jknq
Kandler O, Weiss N. Regular nonsporing Gram–positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG. Editors. Bergey’s Manual of Systematic Bacteriology. 10th ed. Baltimore (USA): Williams and Wilkins; 1986. p.1208–1234.
Steel R, Torrie J, Dickey D. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. New York (USA): McGraw Hill; 1997. 666 p.
Duncan DB. Multiple range and multiple F tests. Biometrics [Internet]. 1955; 11(1):1–42. doi: https://doi.org/fhcz8h
Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: a review. J. Food Drug Anal. [Internet]. 2018; 26(3):927–939. doi: https://doi.org/gfzjrv
Khailova L, Baird CH, Rush AA, McNamee EN, Wischmeyer PE. Lactobacillus rhamnosus GG improves outcome in experimental Pseudomonas aeruginosa pneumonia: Potential role of regulatory T cells. Shock [Internet]. 2013; 40(6):496–503. doi: https://doi.org/g8t3dd
Alcon–Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, Lawson MAE, Kiu R, Leclaire C, Chalklen L, Kujawska M, Mitra S, Fardus–Reid F, Belteki G, McColl K, Swann JR, Kroll JS, Clarke P, Hall LJ. Microbiota supplementation with bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: An observational study. Cell Rep. Med. [Internet]. 2020; 1(5):100077. doi: https://doi.org/fvv3
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res. [Internet]. 2017; 4:14. doi: https://doi.org/gktjhb
Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes Meet in ARDS. Yale J. Biol. Med. [Internet]. 2018 [consultado 25 Abr. 2024]; 91(2):143–149. PMID: 29955219. Disponible en: https://goo.su/ztSc
Al–Dury S, Marschall HU. Ileal bile acid transporter inhibition for the treatment of chronic constipation, cholestatic pruritus, and NASH. Front. Pharmacol. [Internet]. 2018; 9:931. doi: https://doi.org/gd8whr
Araújo MM, Sousa TMM, Teixeira PC, Figueiredo ACMG, Botelho PB. The effect of probiotics on postsurgical complications in patients with colorectal cancer: A systematic review and meta–analysis. Nutr. Rev. [Internet]. 2023;81(5):493–510. doi: https://doi.org/g8t3df
Etareri–Evivie S, Abdelazez A, Li B, Bian X, Li W, Du J, Huo G, Liu F. In vitro organic acid production and in vivo food pathogen suppression by probiotic S. Thermophilus and L. Bulgaricus. Front. Microbiol. [Internet]. 2019;10:782. doi: https://doi.org/g8t3dg
Derechos de autor 2024 José Miranda–Yuquilema, Juan Taboada–Pico, Wilfido Briñez–Zambrano, Mercy Cuenca–Condoy
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.