Forma complicada de ateroesclerosis en un macho de mono verde africano (Chlorocebus aethiops sabaeus). Caso clínico
Resumen
La aterosclerosis es la base mecánica de los trastornos cardiovasculares, que se manifiestan en el daño a las paredes de la aorta y las arterias coronarias, cerebrales y periféricas, lo cual lleva a la isquemia aguda o crónica de órganos y tejidos internos. La publicación describe un caso de lesión ateroesclerótica espontánea de la aorta, con la formación de un aneurisma disecante en un mono verde africano macho. Los antepasados fueron introducidos desde Etiopía y Europa. El mono descrito en este estudio de caso fue alojado por un grupo familiar en un recinto al aire libre con una habitación adjunta más pequeña equipada con un sistema de calefacción. Vivió 16,4 años. El diagnóstico patológico se estableció mediante autopsia completa e histopatología. La enfermedad principal fue gastroenterocolitis atrófica crónica con exacerbación complicada con distrofia alimentaria, caquexia (atrofia parda del miocardio, hígado y músculos esqueléticos). Las enfermedades concomitantes: aterosclerosis complicada de la aorta, aneurisma disecante de la aorta abdominal con un gran trombo cilíndrico organizado en la zona del aneurisma, aterosclerosis estenosante de las arterias renales, riñón izquierdo vascular arrugado; aterosclerosis focal de las arterias coronarias y sus ramas con pequeños focos de cardiosclerosis aterosclerótica y arteriosclerosis de las arterias cerebrales. Los cambios detectados indican una similitud significativa en la patomorfosis de las lesiones ateroescleróticas en el mono verde africano y en los humanos. Esto nos permite considerar este género de primates como un modelo de laboratorio prometedor para estudiar la patogénesis y los mecanismos de regresión, así como la eficacia de enfoques terapéuticos para el tratamiento de la ateroesclerosis y sus complicaciones.
Descargas
Citas
Karpin VA, Melnikova EN, Gudkov AB, Popova ON. Хронические Облитерирующие Заболевания Артерий Нижних Конечностей На Севере (Обзор Литературы) [Chronic occlusive diseases of lower limb arteries in the North (Literature review)]. Ekologiya cheloveka (Human ecology) [Internet]. 2017; 24(8):37–43. Russian. doi: https://doi.org/gt7dbm
Lionakis N, Briasoulis A, Zouganeli V, Koutoulakis E, Kalpakos D, Xanthopoulos A, Skoularigis J, Kourek C. Coronary artery aneurysms: Comprehensive review and a case report of a left main coronary artery aneurysm. Curr. Probl. Cardiol. [Internet]. 2023; 48(7):101700. doi: https://doi.org/gt7dbn
Maxfield FR, Steinfeld N, Ma CJ. The formation and consequences of cholesterol–rich deposits in atherosclerotic lesions. Front. Cardiovasc. Med. [Internet]. 2023; 10:1148304. doi: https://doi.org/gs3rf8
Lusis AJ. Atherosclerosis. Nature [Internet]. 2000; 407(6801):233–241. doi: https://doi.org/fkv5vw
Björkegren JLM, Lusis AJ. Atherosclerosis: Recent developments. Cell [Internet]. 2022; 185(10):1630–1645. doi: https://doi.org/gp3qv3
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat. Rev. Dis. Primers [Internet]. 2019; 5(56). doi: https://doi.org/ggvr8t
Lusis AJ. Genetics of atherosclerosis. Trends. Genet. [Internet]. 2012; 28(6):267–275. doi: https://doi.org/gt7dbp
Zhang Y, Fatima M, Hou S, Bai L, Zhao S, Liu E. Research methods for animal models of atherosclerosis (Review). Mol. Med. Rep. [Internet]. 2021; 24(6):1–14. doi: https://doi.org/gt7dbq
Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald‑Smith S, To TLO, Yan BP, Liu T, Tse G. Animal models of atherosclerosis (Review). Biomed. Rep. [Internet]. 2017; 6(3):259–266. doi: https://doi.org/f95chk
Shelton KA, Clarkson TB, Kaplan JR. Chapter 8. Nonhuman primate models of atherosclerosis. In: Abee CR, Mansfield K, Tardif S, Morris T, editors. Nonhuman primates in biomedical research. 2nd ed. Vol.2. Diseases [Internet]. Boston (Massachusetts, USA): Academic Press; 2012. p. 385–411. doi: https://doi.org/gt7dbr.
Rusanov S. Atherosclerosis in animals is a separate type of atherosclerosis that has nothing to do with the two types of atherosclerosis in humans. Med. Res. Arch. [Internet]. 2022; 10(4):1–21. doi: https://doi.org/gt7dbs
Vastesaeger MM, Delcourt R. Spontaneous atherosclerosis and diet in captive animals. Nutr. Dieta [Internet]. 1961;3 (3):174–188. doi: https://doi.org/c8wzwr
Kritchevsky D, Nicolosi RJ. Atherosclerosis in nonhuman primates. In: Simon DI, Rogers C, editors. Vascular disease and Injury: Preclinical research. Totowa (New Jersey, USA): Humana Press; 2001. p. 193–204. Chapter 14. (Contemporary Cardiology Series).
Hess RS, Kass PH, Van Winkle TJ. Association between diabetes mellitus, hypothyroidism or hyperadrenocorticism, and atherosclerosis in dogs. J. Vet. Intern. Med. [Internet]. 2003; 17(4):489–494. doi: https://doi.org/dkz99j
Schmitt CA, Service SK, Jasinska AJ, Dyer TD, Jorgensen MJ, Cantor RM, Weinstock GM, Blangero J, Kaplan JR, Freimer NB. Obesity and obesogenic growth are both highly heritable and modified by diet in a nonhuman primate model, the African green monkey (Chlorocebus aethiops sabaeus). Int. J. Obes. [Internet]. 2018; 42:765–774. doi: https://doi.org/gf66bc
Castro J, Puente P, Martínez R, Hernández A, Martínez L, Pichardo D, Aldana L, Valdés I, Cosme K. Measurement of hematological and serum biochemical normal values of captive housed Chlorocebus aethiops sabaeus monkeys and correlation with the age. J. Med. Primatol. [Internet]. 2016; 45(1):12–20. doi: https://doi.org/f86xz5
Liddie S, Goody RJ, Valles R, Lawrence MS. Clinical chemistry and hematology values in a Caribbean population of African green monkeys. J. Med. Primatol. [Internet]. 2010; 39(6):389–398. doi: https://doi.org/fd79tw
Gresham GA, Howard AN, McQueen J, Bowyer DE. Atherosclerosis in primates. Br. J. Exp. Pathol. 1965; 46(1):94–103. PMID 14295565
Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler. Thromb. Vasc. Biol. [Internet]. 1995; 15(9):1512–1531. doi: https://doi.org/bs7wb4
Prescott MF, McBride CH, Hasler–Rapacz J, Von Linden J, Rapacz J. Development of complex atherosclerotic lesions in pigs with inherited hyper–LDL cholesterolemia bearing mutant alleles for apolipoprotein B. Am. J. Pathol. [Internet]. 1991; 139(1):139–147. PMID 1853929
Gerrity RG, Natarajan R, Nadler JL, Kimsey T. Diabetes–induced accelerated atherosclerosis in swine. Diabetes [Internet]. 2001; 50(7):1654–1665. doi: https://doi.org/bc3db7
Zarins CK, Xu C, Glagov S. Aneurysmal enlargement of the aorta during regression of experimental atherosclerosis. J. Vasc. Surg. [Internet]. 1992;15(1):90–101. doi: https://doi.org/fxscqd
Stehbens WE. Aneurysms and experimental atherosclerosis. J. Vasc. Surg. [Internet]. 1992; 16(4):665–666. doi: https://doi.org/dhdt3z
Rudel L, Haines J, Sawyer J. Effects on plasma lipoproteins of monounsaturated, saturated, and polyunsaturated fatty acids in the diet of African green monkeys. J. Lipid. Res. [Internet]. 1990; 31(10):1873–1882. doi: https://doi.org/gt7dbt
Bullock BC, Lehner NDM, Clarkson TB, Feldner MA, Wagner WD, Lofland HB. Comparative primate atherosclerosis: I. Tissue Cholesterol Concentration and Pathologic Anatomy. Exp. Mol. Pathol. [Internet]. 1975; 22(2):151–175. doi: https://doi.org/fjkmvk
Rudel LL, Davis M, Sawyer J, Shah R, Wallace J. Primates highly responsive to dietary cholesterol up–regulate hepatic ACAT2, and less responsive primates do not. J. Biol. Chem. [Internet]. 2002; 277(35):31401–31406. doi: https://doi.org/bb3r9q
Rudel LL. Genetic factors influence the atherogenic response of lipoproteins to dietary fat and cholesterol in nonhuman primates. J. Am. Coll. Nutr. [Internet]. 1997; 16(4):306–312. doi: https://doi.org/gt7dbv
Wolfe MS, Sawyer JK, Morgan TM, Bullock BC, Rudel LL. Dietary polyunsaturated fat decreases coronary artery atherosclerosis in a pediatric–aged population of African green monkeys. Arterioscler. Thromb. Vasc. Biol. [Internet]. 1994; 14(4):587–597. doi: https://doi.org/fkjkzh
Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub DM, Miller EW. Social stress and atherosclerosis in normocholesterolemic monkeys. Science [Internet]. 1983; 220(4598):733–735. doi: https://doi.org/chbf82
Steiner A, Kendall FE. Atherosclerosis and arteriosclerosis in dogs following ingestion of cholesterol and thiouracil. Arch. Pathol. (Chic). [Internet]. 1946; 42(4):433–444. PMID 21002853
Kavanagh K, Fairbanks LA, Bailey JN, Jorgensen MJ, Wilson M, Zhang L, Rudel LL, Wagner JD. Characterization and heritability of obesity and associated risk factors in vervet monkeys. Obesity [Internet]. 2007; 15(7):1666–1674. doi: https://doi.org/cxg759
He T, Xu C, Krampe N, Dillon SM, Sette P, Falwell E, Haret–Richter GS, Butterfield T, Dunsmore TL, McFadden WM Jr, Martin KJ, Policicchio BB, Raehtz KD, Penn EP, Tracy RP, Ribeiro RM, Frank DN, Wilson CC, Landay AL, Apetrei C, Pandrea I. High–fat diet exacerbates SIV pathogenesis and accelerates disease progression. J. Clin. Invest. [Internet]. 2019; 129(12):5474–5488. doi: https://doi.org/gt7dbx
Coffey AR, Kanke M, Smallwood TL, Albright J, Pitman W, Gharaibeh RZ, Hua K, Gertz E, Biddinger SB, Temel RE, Pomp D, Sethupathy P, Bennett BJ. MicroRNA–146a–5p association with the cardiometabolic disease risk factor TMAO. Physiol. Genomics [Internet]. 2019; 51(2):59–71. doi: https://doi.org/gsgzff
Wang Y, Zhao W, Zhou X. Matrix factorization reveals aging–specific co–expression gene modules in the fat and muscle tissues in nonhuman primates. Sci. Rep. [Internet]. 2016; 6(34335). doi: https://doi.org/f86cnt
Derechos de autor 2024 Sergey Orlov, Andrey Panchenko, Viktor Shestakov, Artem Oganesian, Yulia Kolesnik, David Ilyazyants, Elena Radomskaya, Tamara Fedotkina, Dmitry Bulgin, Leonid Churilov
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.