Identificación de variantes en los genes GBP1 y GBP5 asociados a resistencia y susceptibilidad al síndrome reproductivo y respiratorio porcino en cerdos criollos de Uruguay
Resumen
El síndrome reproductivo y respiratorio porcino (PRRS) es una enfermedad viral que afecta a cerdos, provocando problemas reproductivos y respiratorios que causan pérdidas económicas significativas en la industria porcina mundial. El virus PRRSV es el agente responsable, transmitido principalmente por contacto directo o indirecto a través de vías respiratorias u orales. Aunque el control de este virus implica medidas de bioseguridad, monitoreo y vacunación, no existe actualmente una vacuna totalmente eficaz. Investigaciones han identificado un locus de rasgo cuantitativo en el cromosoma 4 asociado con la resistencia al PRRSV, que incluye a los polimorfismos rs80800372 (WUR) y rs340943904 en los genes GBP1 y GBP5 respectivamente. El PRRSV ha sido detectado en América del Sur, incluido Uruguay en el año 2017. En Uruguay, los cerdos Pampa Rocha son la única raza de cerdos criollos y se encuentran en riesgo debido a su baja población. En este contexto, se plantea evaluar la variabilidad genética en esta raza para las variables de interés, relacionadas con la resistencia al PRRS. Para determinar los genotipos se utilizó la técnica de PCR en tiempo final, seguida de secuenciación Sanger. Se identificaron los alelos correspondientes para cada variable, con frecuencias de 0,825 para el alelo A y 0,175 para el alelo G en rs80800372 (WUR), y de 0,825 para el alelo G y 0,175 para el alelo T en rs340943904. Ambas variantes se encuentran en equilibrio de Hardy Weinberg y presentan desequilibrio de ligamiento. El estudio destaca un aumento en la frecuencia de los alelos favorables en los genes GBP1 y GBP5 relacionados con la resistencia al PRRSV, en los cerdos Pampa Rocha. Estos hallazgos subrayan la importancia de utilizar marcadores moleculares para identificar animales resistentes al PRRS, lo cual podría ser beneficioso para la producción porcina y el bienestar animal.
Descargas
Citas
Abella G, Pena RN, Nogareda C, Armengol R, Vidal A, Moradell L, Tarancon V, Novell E, Estany J, Fraile L. A WUR SNP is associated with European Porcine Reproductive and Respiratory Virus Syndrome resistance and growth performance in pigs. Res. Vet. Sci. [Internet]. 2016; 104:117–122. doi: https://doi.org/f8bw9v
You X, Li G, Lei Y, Xu Z, Zhang P, Yang Y. Role of genetic factors in different swine breeds exhibiting varying levels of resistance/susceptibility to PRRSV. Virus Res. [Internet]. 2023; 326:199057. doi: https://doi.org/gs642r
Guo C, Liu X. Editorial: Porcine reproductive and respiratory syndrome virus – animal virology, immunology, and pathogenesis. Front. Immunol. [Internet]. 2023; 14:1194386. doi: https://doi.org/gtn97d
Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front. Vet. Sci. [Internet]. 2023; 10:1289570. doi: https://doi.org/gs65df
Pileri E, Mateu E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet. Res. [Internet]. 2016; 47:108. doi: https://doi.org/f89dr6
Pena RN, Fernández C, Blasco–Felip M, Fraile LJ, Estany J. Genetic Markers Associated with Field PRRSV–Induced Abortion Rates. Viruses. [Internet]. 2019; 11(8):706. doi: https://doi.org/m7wb
Harlizius B, Mathur P, Knol EF. Breeding for resilience: new opportunities in a modern pig breeding program. J. Anim. Sci. [Internet]. 2020; 98(Suppl. 1):S150–S154. doi: https://doi.org/m7wc
Dekkers J, Rowland RRR, Lunney JK, Plastow G. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs. Vet. Microbiol. [Internet]. 2017; 209:107–113. doi: https://doi.org/gchvxw
Wu Q, Han Y, Wu X, Wang Y, Su Q, Shen Y, Guan K, Michal JJ, Jiang Z, Liu B, Zhou X. Integrated time–series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV. Front. Immunol. [Internet]. 2022; 13:960709. doi: https://doi.org/gsgtc6
Boddicker N, Waide EH, Rowland RRR, Lunney JK, Garrick DJ, Reecy JM, Dekkers JCM. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. [Internet]. 2012; 90(6):1733–1746. doi: https://doi.org/fzww9v
Boddicker NJ, Garrick DJ, Rowland RRR, Lunney JK, Reecy JM, Dekkers JCM. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim. Genet. [Internet]. 2014; 45(1):48–58. doi: https://doi.org/f5nb77
Koltes JE, Fritz–Waters E, Eisley CJ, Choi I, Bao H, Kommadath A, Serão NVL, Boddicker NJ, Abrams SM, Schroyen M, Loyd H, Tuggle CK, Plastow GS, Guan L, Stothard P, Lunney JK, Liu P, Carpenter S, Rowland RRR, Dekkers JCM, Reecy JM. Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. BMC Genomics. [Internet]. 2015; 16:412. doi: https://doi.org/f7nkhw
Dunkelberger JR, Serão NVL, Weng Z, Waide EH, Niederwerder MC, Kerrigan MA, Lunney JK, Rowland RRR, Dekkers JCM. Genomic regions associated with host response to porcine reproductive and respiratory syndrome vaccination and co–infection in nursery pigs. BMC Genomics. [Internet]. 2017; 18:865. doi: https://doi.org/m7wd
Jeon RL, Cheng J, Putz AM, Dong Q, Harding JCS, Dyck MK, Plastow GS, Fortin F, Lunney J, Rowland R, et al. Effect of a genetic marker for the GBP5 gene on resilience to a polymicrobial natural disease challenge in pigs. Livest Sci. [Internet]. 2021; 244 (Suppl. 4):104399–101413. doi: https://doi.org/m7wf
Lunney JK, Benfield DA, Rowland RRR. Porcine reproductive and respiratory syndrome virus: an update on an emerging and re–emerging viral disease of swine. Virus Res. [Internet]. 2010; 154(1–2):1–6. doi: https://doi.org/ftw8kf
Ramos N, Betancour G, Puig J, Arbiza J. An update on genetic analysis of porcine reproductive and respiratory syndrome virus type 2 (PRRSV–2) in South America: identification of ORF5 sequences of lineage 1A, 1C and 1G. Arch. Microbiol. [Internet]. 2022; 204(7):367. doi: https://doi.org/m7wg
Ramos N, Mirazo S, Castro G, Cabrera K, Osorio F, Arbiza J. First–time detection of porcine reproductive and respiratory syndrome virus (PRRSV) infection in Uruguay. Transbound. Emerg. Dis. [Internet]. 2018; 65(2):352–356. doi: https://doi.org/gcvjqg
Castro G. Situación de los recursos genéticos porcinos locales en Uruguay. Arch. Zootec. [Internet]. 2007 [cited 6 Feb 2024]; 56(Supl.1):783–788. Available in: https://goo.su/wwOFN
Food and Agriculture Organization of the United Nations (FAO). Plan de acción mundial sobre los recursos zoogenéticos y la Declaración de Interlaken [Internet]. Roma: FAO; 2007 [cited February 6, 2024]. 52 p. Disponible en: https://goo.su/zkeqY
Barlocco N. Experiencias en la caracterización productiva del cerdo Pampa Rocha en Uruguay. Producción de carne natural. En: Llambí S, coordinadora. Situación y conservación de recursos zoogenéticos porcinos. Montevideo (UY): Oficina de Publicaciones de Facultad de Veterinaria (Udelar); 2011. p. 31–39.
Vadell A, Barlocco N, Carballo C. Prolificidad y longevidad productiva de cerdas Pampa Rocha en un sistema de producción al aire libre. Rev. Computadorizada Prod. Porc. [Internet]. 2010 [cited 14 Feb 2024]; 17(2):149–153. Disponible en: https://goo.su/04Oz0
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain–terminating inhibitors. Proc. Natl. Acad. Sci. USA. [Internet]. 1977; 74(12):5463–5467. doi: https://doi.org/dgsrk5
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer–BLAST: a tool to design target–specific primers for polymerase chain reaction. BMC Bioinform. [Internet]. 2012; 13:134. doi: https://doi.org/f38qjk
Hall TA. BioEdit: A User–Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999; 41:95–98.
Weir BS, Cockerham CC. Estimating F–Statistics for the analysis of population structure. Evolution. [Internet]. 1984; 38(6):1358–1370. doi: https://doi.org/gg27rg
Belkhir K, Borsa P, Chikhi L, Rafauste N, Bonhomme F. Page WEB de GENETIX [homepage on the Internet]. Montpellier (FR): Université de Montpellier II, Institut des Sciences de l’Evolution; 2004 [cited 14 Feb. 2024]. Available in: https://goo.su/DbgsF
Raymond M, Rousset F. GENEPOP (version 1.2): Population Genetics Software for Exact Tests dnd Ecumenicism. J. Heredity [Internet]. 1995; 86(3):248–249. doi: https://doi.org/gfkmsg
Rousset F. 2008. GENEPOP’007: A Complete Reimplementation of the Genepop Software for Windows and Linux. Mol. Ecol. Resour. [Internet]. 2008; 8(1):103–106. doi: https://doi.org/c38k86
Black WC, Krafsur ES. A FORTRAN Program for the Calculation and Analysis of Two–locus Linkage Disequilibrium Coefficients. Theor. Appl. Genet. [Internet]. 1985; 70(5):491–496. doi: https://doi.org/dcmjrk
Liang W, Li Z, Wang P, Fan P, Zhang Y, Zhang Q, Wang Y, Xu X, Liu B. Differences of immune responses between Tongcheng (Chinese local breed) and Large White pigs after artificial infection with highly pathogenic porcine reproductive and respiratory syndrome virus. Virus Res. [Internet]. 2016; 215:84–93. doi: https://doi.org/f8fkdw
Meng C, Su L, Li Y, Zhu Q, Li J, Wang H, He Q, Wang C,Wang W, Cao S. Different Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus Infection Among Chinese Native Pig Breeds. Arch. Virol. [Internet]. 2018; 163(8):2155–2164. doi: https://doi.org/gd3b6v
Kang R, Ji G, Yang X, Lv X, Zhang Y, Ge M, Pan Y, Li Q, Wang H, Zeng F. Investigation on Host Susceptibility of Tibetan Pig to Infection of Porcine Reproductive and Respiratory Syndrome Virus Through Viral Challenge Study. Vet. Microbiol. [Internet]. 2016; 183:62–68. doi: https://doi.org/f79dx3
Hickmann FMW, Braccini Neto J, Kramer LM, Huang Y, Gray KA, Dekkers JCM, Sanglard LP, Serão NVL. Host Genetics of Response to Porcine Reproductive and Respiratory Syndrome in Sows: Reproductive Performance. Front. Genet. [Internet]. 2021; 12:707870. doi: https://doi.org/m7wh
Montenegro M, Llambí S, Castro G, Barlocco N, Vadell A, Landi V, Delgado JV, Martínez A. Genetic Characterization of Uruguayan Pampa Rocha Pigs with Microsatellite Markers. Genet. Mol. Biol. [Internet]. 2015; 38(1):48–54. doi: https://doi.org/f67n2g
Khatun A, Nazki S, Jeong CG, Gu S, Mattoo SUS, Lee SI, Yang MS, Lim B, Kim KS, Kim B, Lee KT, Park CK, Lee SM, Kim WI. Effect of Polymorphisms in Porcine Guanylate–Binding Proteins on Host Resistance to PRRSV Infection in Experimentally Challenged Pigs. Vet. Res. [Internet]. 2020; 51:14. doi: https://doi.org/m7wj
Kim S, Cho ES, Kim YS, Lim Y, Jeong SA, Song M, Lee KT, Kim JM. Novel Insight into Linkage Disequilibrium and Additive Effect of GBP1 and GBP5 SNP Haplotypes Associated with Porcine Reproductive and Respiratory Syndrome Virus Susceptibility in Korean Native Pigs. Anim. Genet. [Internet]. 2021; 52(6):897–898. doi: https://doi.org/gpw4nj
Derechos de autor 2024 María del Carmen Montenegro, Nariné Balemian, Bibiana Freire, Cecilia Carballo, Silvia Llambí
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.