Implicación de la vía muscarínica y del óxido nítrico en el tránsito intestinal y el retraso del vaciamiento gástrico del extracto metanólico de Salvia barrelieri en ratones
Resumen
Este estudio evaluó la influencia de los extractos metanólico (EM) y decoctado (ED) de Salvia barrelieri (SBA) sobre el tránsito intestinal (TI) y el vaciamiento gástrico (VG) en ratones. Sólo las dosis de ME SBA indujeron una fuerte inhibición de GE en 46,82 ± 4,34; 54,71 ± 3,29 y 48,45 ± 1,33 % (P≤0.0001) para las dosis de 100, 200 o 400 mg·kg-1 respectivamente. Los extractos por sí solos no tuvieron efectos sobre el movimiento intestinal (sólo un ligero aumento no significativo a 400 mg·kg-1). Sin embargo, el bloqueo de los receptores muscarínicos resultó en una disminución de TI de 10,34 % y 17,53 % con EM y ED, respectivamente, en comparación con el control. Por el contrario, la coadministración con L–arginina (donante de óxido nítrico) disminuyó significativamente el tránsito (47,31 % y 50,80 % para EM y ED, respectivamente), mientras inhibe Oxido Nítrico Sintasa (NOS) con L–Nω–Nitro–Arginina (L–NNA) tuvo un efecto menor (12,24 % y 17,24 % para EM y ED, respectivamente). Solo los extractos EM de SBA inhibieron significativamente el VG (disminución del 46,82–54,71 % en todas las dosis), imitando el efecto de la atropina. Los extractos ED y la combinación de EM con atropina no mostraron ningún impacto significativo. Curiosamente, la L–arginina solo afectó al vaciamiento con ED SBA (disminución del 27,8 %), no con EM SBA. La inhibición del NOS bloqueó parcialmente el efecto de EM SBA. Estos hallazgos sugieren que los extractos EM de SBA se dirigen principalmente al VG a través de mecanismos que involucran tanto la vía muscarínica como la del NO, mientras que los extractos ED tienen efectos mínimos. Este estudio destaca la compleja interacción de las vías en la función intestinal y la influencia potencial del tipo de extracto y su formulación en su efectividad.
Descargas
Citas
Codutti A, Cremer J, Alim K. Changing flows balance nutrient absorption and bacterial growth along the gut. Phys. Rev. Lett. [Internet]. 2022; 129(13):138101. doi: https://doi.org/gqv67h
Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. [Internet]. 2015; 313(9):949–958. doi: https://doi.org/ghj28x
Jedidi S, Rtibi K, Selmi S, Aloui F, Selmi H, Wannes D, Sammari H, Dhawefi N, Chaâbane A, Sebai H. Phytochemical/Antioxidant Properties and Individual/Synergistic Actions of Salvia officinalis L. Aqueous Extract and Loperamide on Gastrointestinal Altering Motor Function. J. Med. Food. [Internet]. 2019; 22(12):1235–1245. doi: https://doi.org/m6gj
Mamache W, Amira S, Ben Souici C, Laouer H, Benchikh F. In vitro antioxidant, anticholinesterases, anti‐α‐amylase, and anti‐α‐glucosidase effects of Algerian Salvia aegyptiaca and Salvia verbenaca. J. Food Biochem. [Internet]. 2020; 44(11):e13472. doi: https://doi.org/mbkp
Dolatabadi F, Abdolghaffari AH, Farzaei MH, Baeeri M, Ziarani FS, Eslami M, Abdollahi M, Rahimi R. The protective effect of Melissa officinalis L. in visceral hypersensitivity in rat using 2 models of acid–induced colitis and stress–induced irritable bowel syndrome: a possible role of nitric oxide pathway. J. Neurogastroenterol. Motil. [Internet]. 2018; 24(3):490–501. doi: https://doi.org/gdp4jx
Papathanasopoulos A, Rotondo A, Janssen P, Boesmans W, Farré R, Vanden Berghe P, Tack J. Effect of acute peppermint oil administration on gastric sensorimotor function and nutrient tolerance in health. Neurogastroenterol. Motil. [Internet]. 2013; 25(4):e263–e271. doi: https://doi.org/m6gm
Napoli E, Ruberto G, Carrubba A, Sarno M, Muscarà C, Speciale A, Cristani M, Cimino F, Saija A. Phenolic Profiles, Antioxidant and Anti–Inflammatory Activities of Hydrodistillation Wastewaters from Five Lamiaceae Species. Molecules. [Internet]. 2022; 27(21):7427. doi: https://doi.org/m6gk
Kaoudone C, Benchikh F, Abdennour C, Benabdallah H, Mamache W, Amira S. Free Radical Scavenging and Antinociceptive Activities of the Aqueous Extract from Matricaria chamomilla L. Flowers. TURJAF. [Internet]. 2022; 10(10):2076–2080. doi: https://doi.org/m6gn
Yacob T, Shibeshi W, Nedi T. Antidiarrheal activity of 80% methanol extract of the aerial part of Ajuga remota Benth (Lamiaceae) in mice. BMC Complement. Altern. Med. [Internet]. 2016; 16(303):1–8. doi: https://doi.org/gkq5vn
Mehmood MH, Munir S, Khalid UA, Asrar M, Gilani AH. Antidiarrhoeal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K+–channels activation. BMC Complement. Altern. Med. [Internet]. 2015; 15(75):1–9. doi: https://doi.org/f69j2p
Amira S, Soufane S, Gharzouli K. Effect of sodium fluoride on gastric emptying and intestinal transit in mice. Exp. Toxicol. Pathol. [Internet]. 2005; 57(1):59–64. doi: https://doi.org/b9zqdn
Demireezer LÖ, Gürbüz P, Uğur EPK, Bodur M, Özenver N, Uz A, Güvenalp Z. Molecular docking and ex vivo and in vitro anticholinesterase activity studies of Salvia sp. and highlighted rosmarinic acid. Turkish J. Med. Sci. [Internet]. 2015; 45(5):1141–1148. doi: https://doi.org/m6gp
de Souza ILI, Oliveira GA, Travassos RA, Vasconcelos LHC, Correia AC, Martins IRR, dos Santos Júnior MSM, Costa VC, Tavares JF, da Silva MS, da Silva BA. Spasmolytic activity of Hyptis macrostachys Benth.(Lamiaceae). J. Med. Plants Res. [Internet]. 2013 [cited 20 Dec 2023]; 7(33):2436–2443. Available in: https://goo.su/p6lFa
Makrane H, Aziz M, Mekhfi H, Ziyyat A, Bnouham M, Legssyer A, Gressier B, Eto B. Antispasmodic and Myorelaxant Activity of Organic Fractions from Origanum majorana L. on Intestinal Smooth Muscle of Rodents. Euro. J. Med. Plants. [Internet]. 2018; 23(2):1–11. doi: https://doi.org/m6gr
Capasso R, Borrelli F, Zjawiony J, Kutrzeba L, Aviello G, Sarnelli G, Capasso F, Izzo AA. The hallucinogenic herb Salvia divinorum and its active ingredient salvinorin A reduce inflammation–induced hypermotility in mice. Neurogastroenterol. Motil. [Internet]. 2008; 20(2):142–148. doi: https://doi.org/bnqgt5
Tack J. Gastric motor disorders. Best Pract. Res. Clin. Gastroenterol. [Internet]. 2007; 21(4):633–644. doi: https://doi.org/bx6s4m
Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol. Motil. [Internet]. 2019; 31(4):e13546. doi: https://doi.org/gg6px4
Ishiguchi T, Nakajima M, Sone H, Tada H, Kumagai AK, Takahashi T. Gastric distension–induced pyloric relaxation: central nervous system regulation and effects of acute hyperglycaemia in the rat. J. Physiol. [Internet]. 2001; 533(3):801–813. doi: https://doi.org/ddg8s4
Yuan SY, Costa M, Brookes SJ. Neuronal control of the pyloric sphincter of the guinea–pig. Neurogastroenterol. Motil. [Internet]. 2001; 13(3):187–198. doi: https://doi.org/dfs4zr
Carnevali TR, Waller SB, Ferrasso MM, Rosa Júnior AS, Carapeto LP, Freitag RA, Schuch LFD, Cleff MB. Radiological determination of gastric motility in experimental model treated with Rosmarinus officinalis Linn. (Lamiaceae) extracts. Indian J. Exp. Biol. [Internet]. 2019 [cited 18 Jan 2024]; 57(9):708–714. Available in: https://goo.su/ib1n
Aydin S, Seker E. Effect of an aqueous distillate of Origanum onites L. on isolated rat fundus, duodenum and ileum: evidence for the role of oxygenated monoterpenes. Pharmazie. [Internet]. 2005 [cited 08 Jan 2024]; 60(2):147–150. Available in: https://goo.su/zlqM
Ghayur MN, Khan AH, Gilani AH. Ginger facilitates cholinergic activity possibly due to blockade of muscarinic autoreceptors in rat stomach fundus. Pak. J. Pharm. Sci. [Internet]. 2007 [cited 10 Jan 2024]; 20(3):231–235. Available in: https://goo.su/t4bVs
Badary OA, Awad AS, Sherief MA, Hamada FMA. In vitro and in vivo effects of ferulic acid on gastrointestinal motility: inhibition of cisplatin–induced delay in gastric emptying in rats. World J. Gastroenterol. [Internet]. 2006; 12(33):5363–5367. doi: https://doi.org/m6gx
Wang X, Zhang C, Zheng M, Gao F, Zhang J, Liu F. Metabolomics Analysis of L–Arginine Induced Gastrointestinal Motility Disorder in Rats Using UPLC–MS After Magnolol Treatment. Front. Pharmacol. [Internet]. 2019; 10(183):1–14. doi: https://doi.org/gnpdcd
Wu Z, Zhang S, Li P, Lu X, Wang J, Zhao L, Wang Y. Effect of Aurantii fructus immaturus flavonoid on the contraction of isolated gastric smooth muscle strips in rats. Evid. Based Complement. Alternat. Med. [Internet]. 2016; 2016(5616905):1–7. doi: https://doi.org/f8vs3z
Baggio CH, Freitas CS, Mayer B, dos Santos AC, Twardowschy A, Potrich FB, Cipriani TR, de Souza LM, Sassaki GL, Iacomini M, Marques MCA, Mesia–Vela S. Muscarinic–dependent inhibition of gastric emptying and intestinal motility by fractions of Maytenus ilicifolia Mart ex. Reissek. J. Ethnopharmacol. [Internet]. 2009; 123(3):385–391. doi: https://doi.org/b7k4m5
Dufour C, Loonis M, Delosière M, Buffière C, Hafnaoui N, Santé–Lhoutellier V, Rémond D. The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chem. [Internet]. 2018; 240:314–222. doi: https://doi.org/m6hx
Derechos de autor 2024 Fatima Benchikh, Hind Amira, Walid Mamache, Hassiba Benabdallah, Smain Amira
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.