Un nuevo proceso inmunoquímico que convierte crotamina del veneno de serpiente de cascabel (Crotalus durissus cumanensis), un antígeno no-inmunogénico, en inmunogénico para producir anticuerpos anti-crotamina.

A new immunochemistry process that transform a non-immunogenic crotamine-like antigen from rattlesnake (Crotalus durissus cumanensis) venom, in immunogenic to produce anti-crotamine-like antibodies.

  • María Magdalena Pulido-Mendez Universidad Central de Venezuela
  • María Eugenia Acosta Universidad Central de Venezuela
  • Alexis Rodríguez-Acosta Universidad Central de Venezuela
Palabras clave: Crotalus durissus cumanensis, crotamina- similar, glutaraldehido, anticuerpo policlonal, polimerización, veneno

Resumen

La producción de anticuerpos en animales puede ser una actividad ardua, debido a que muchos antígenos, principalmente los de baja masa molecular, provocan una respuesta inmune imperceptible o aún son totalmente no-inmunogénicos. La transformación de una molécula no inmunogénica, en un antígeno efectivo representa un importante reto inmunológico. La crotamina obtenida del veneno de la serpiente de cascabel (Crotalus durissus cumanensis) fue purificada a través de una columna de cromatografía Mono S HR 10/10 (Biorad, EUA) y usada para inmunizar ratones de la cepa C57/B, luego de ser polimerizada con glutaraldehido. Los anticuerpos policlonales dirigidos contra la crotamina nativa tratada con glutaraldehido, y su producto el polímero obtenido de la crotamina (CLP) se lograron mediante inmunización vía ganglios linfáticos con polímeros de CLP. Esos anticuerpos policlonales fueron capaces de detectar el CLP, en un ensayo de ELISA. Los perfiles de migración (SDS-PAGE) de la crotamina nativa y la CLP mostraron bandas de masa molecular ~ 3 kDa y ~18 kDa, respectivamente. Estos resultados ofrecen evidencia de que los anticuerpos policlonales reconocen epítopes específicos originales y posteriores a la polimerización en la molécula de CLP, que se mantuvieron luego del proceso de polimerización. Los efectos se discuten en relación con la preservación de epítopes funcionales post-polimerización en CLP.

Descargas

La descarga de datos todavía no está disponible.

Citas

AVRAMEAS, S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochem. 6: 43–52. 1969.

AVRAMEAS, S.; TERNYNCK, T. Peroxidase labeled antibody and Fab conjugates with enhanced intracellular penetration. Immunochem. 8: 1175-1179. 1971.

BANCHEREAU, J.; PALUCKA, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5: 296–306. 2005.

BEAUCHAMP, R.A. Critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol. 22: 143-174. 1992.

BOLDRINI-FRANÇA, J.; CORRÊA-NETTO, C.; SILVA, M.M.; RODRIGUES, R.S.; DE LA TORRE, P.; PÉREZ, A.; SOARES, A.M.; ZINGALI, R.B.; NOGUEIRA, R.A.; RODRIGUES, V.M.; SANZ, L.; CALVETE, J.J. Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J. Proteomics. 73: 1758–1776. 2010

COCIANCICH, S.; GOYFFON, M.; BONTEMS, F.; BULET, P.; BOUET, F.; MENEZ, A.; HOFFMANN, J. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 194:17-22. 1993.

CORONADO, M.A.; GABDULKHAKOV, A.; GEORGIEVA, D.; SANKARAN, B.; MURAKAMI, M.T.; ARNI, R.K.; BETZEL, C. Structure of the polypeptide crotamine from the Brazilian rattlesnake Crotalus durissus terrificus. Acta. Crystallograph. 69: 1958–1964. 2013.

CORZO, G.; ESCOUBAS, P.; VILLEGAS, E.; BARNHAM, K.J.; HE, W.; NORTON, R.S.; NAKAJIMA, T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem. J. 359: 35–45. 2001.

FASOLD, H.; KLAPPENBERGER, J.; MEYER, C.; REMOLD, H. Bifunctional Reagents for the Crosslinking of Proteins. Angew. Chem. Int. Ed. Engl. 10: 795–801. 1971.

GONÇALVES, J.M,; ARANTES, E.G. Estudos sobre venenos de serpentes brasileiras III—Determinacao quantitativa de crotamina no veneno de cascavel Brasileira. An. Acad. Bras. Cien. 28: 369–371. 1956.

GONÇALVES, J.M.; POLSON, A. The electrophoretic analysis of snake venoms. Arch. Biochem. 13: 253–259. 1947.

GRIFFITH, I.P. The effect of cross-links on the mobility of proteins in dodecyl sulphate polyacrylamide gels. Biochem. J. 126:553–560. 1972.

HABEEB, A.F.S.A. Preparation of enzymically active, water- insoluble derivatives of trypsin. Arch. Biochem. Biophys. 119: 264-268. 1967.

HABEEB, A.F.S.A.; HIRAMOTO, R. Reactions of proteins with glutaraldehyde. Arch. Biochem. Biophys. 126:16– 26. 1968.

HOPWOOD, D. The effect of pH and various fixatives on isolated ox chromaffin granules with respect to the chromaffin reaction. J. Anat. 102:415–424. 1968.

HOPWOOD, D. A. Comparison of the crosslinking abilities of glutaraldehyde, formaldehyde and alpha- hydroxyadipaldehyde with bovine serum albumin and casein. Histochemie. 17:151–161. 1969.

JANSEN, E.F.; OLSON, A.C. Properties and enzymatic activities of papain insolubilized with glutaraldehyde. Biochem. Biophys. 129: 221-227. 1969.

KAYED, R.; HEAD, E.; THOMPSON, J.L.; McINTIRE, T.M.; MILTON, S.C.; COTMAN, C.W.; GLABE, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Sci. 300: 486–489. 2003.

KERKIS, I.; HAYASHI, M.A.; PRIETO DA SILVA, A.R.; PEREIRA, A.; DE SÁ- JÚNIOR, P.L.; ZAHARENKO, A.J,.;RÁDIS-BAPTISTA, G.; KERKIS, A.; YAMANE, T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed. Res. Int. 2014:675985. 2014.

LAMBERT, M.P.; VELASCO, P.T.; VIOLA, K.L.; KLEIN, W.L. Targeting generation of antibodies specific to conformational epitopes of amyloid beta-derived neurotoxins. CNS. Neurol. Disord. Drug Targets. 8: 65–81. 2009.

LAURE, C.J. Die primarstruktur des crotaminins Hoppe-Seyler’s Z. Physiol. Chem. 356: 213–215. 1975.

LEE, J.Y.; CHOI, Y.S.; SUH, J.S.; KWON, Y.M.; YANG, V.C.; LEE, S.J.; CHUNG, C.P.; PARK, Y.J. Cell-penetrating chitosan/doxorubicin/TAT conjugates for efficient cancer therapy. Int. J. Cancer. 128: 2470–2480. 2011.

LICHTENEGGER, F.S.; MUELLER, K.B.; OTTE, B.; BECK, B.; HIDDEMANN, W.; SCHENDEL, D.J.; SUBKLEWE, M. CD86 and IL-12p70 are key players for T helper 1 polarization and natural killer cell activation by Toll-like receptor-induced dendritic cells, PLoS. One. 7: e44266. 2012

LONGHI, C.; TRUMPFHELLER, M.P.; IDOYAGA, J.; CASKEY, M.; MATOS, I.; KLUGER, C.; SALAZAR, A.M.; COLONNA, M.; STEINMAN, R.M. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant, J. Exp. Med.206:1589–1602. 2009

OGUIURA, N.; CAMARGO, M.E.; SILVA, A.R.P.; DA HORTON, D.S.P.Q. Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel lines analysis. Toxicon. 38: 443–448. 2000.

OTTESEN, M.; SVENSSON, B. Modification of papain by treatment with glutaraldehyde under reducing and non- reducing conditions. CR. Trav. Lab. Carlsberg. 38:171-185. 1971.

PONCE-SOTO, L.A.; MARTINS, D.; NOVELLO, J.C.; MARANGONI, S. Structural and Biological Characterization of Two Crotamine Isoforms IV-2 and IV-3 Isolated from the Crotalus durissus cumanensis Venom. Protein. J. 26: 533- 540. 2007.

QUIOCHO, F.A.; RICHARDS, F.M. Intermolecular cross linking of a protein enzyme. Adv. Protein. Chem. 25: l-78. 1964.

QUIOCHO, F.A.; RICHARDS, F.M. The enzyme behaviour of carboxypeptidase A in the solid state. Biochem. 5: 4062- 4076. 1966.

SANTOS, M.C.; MORHY, L.; FERREIRA, L.C.L.; OLIVEIRA, E.B. Purification and properties of a crotamine analog from Crotalus durissus ruruima venom. Toxicon. 31: 166. 1993.

SCHEJTER, A.; BAR-ELI, A. Preparation and properties of crosslinked water insoluble catalase. Arch. Biochem. Biophys. 136: 325-330. 1970.

SCHENBERG, S. Geographical pattern of crotamine distribution in the same rattlesnake subspecies. Sci. 129: 1361–1363. 1959.

SHANKAR, G.M.; WALSH, D.M. Alzheimer’s disease: synaptic dysfunction and A-beta. Mol. Neurodegener. 4: 48-61. 2009.

SMITH, L.A.; SCHMIDT, J.J. Cloning and nucleotide sequences of crotamine genes. Toxicon. 28: 575–585. 1990.

STOSCHECK, C. M. Quantitation of protein, Meth. Enzymol. 182: 50–68. 1990.

TOYAMA, M.H.; CARNEIRO, E.M.; MARANGONI, S.; BARBOSA, R.L.; CORSO, G.; BOSCHERO, A.C. Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets. Biochim. Biophys. Acta. 1474: 56–60. 2000.

WESTON, P.D.; AVRAMEAS, S. Proteins coupled to polyacrylamide beads using glutaraldehyde. Biochem. Biophys. Res. Commun. 45:1574–1580. 1971.
Publicado
2021-05-18
Cómo citar
1.
Pulido-Mendez MM, Acosta ME, Rodríguez-Acosta A. Un nuevo proceso inmunoquímico que convierte crotamina del veneno de serpiente de cascabel (Crotalus durissus cumanensis), un antígeno no-inmunogénico, en inmunogénico para producir anticuerpos anti-crotamina.: A new immunochemistry process that transform a non-immunogenic crotamine-like antigen from rattlesnake (Crotalus durissus cumanensis) venom, in immunogenic to produce anti-crotamine-like antibodies. Rev. Cient. FCV-LUZ [Internet]. 18 de mayo de 2021 [citado 28 de abril de 2024];30(4):173-9. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/35975
Sección
Medicina Veterinaria