Tratamiento en infecciones por Enterobacterales que producen betalactamasa de espectro extendido. Revisión Sistemática
Resumen
Las enterobacterias productoras de betalactamasas de espectro extendido se han convertido en una pandemia a nivel mundial representando una amenaza para la salud pública debido a la alta morbilidad y mortalidad asociada a las infecciones por estas, es fundamental realizar una revisión sistemática para documentar la combinación de antibióticos utilizada para combatir las infecciones, con el fin de categorizar y ordenar los tratamientos más utilizados y determinar los más efectivos. La búsqueda electrónica se realizó desde junio de 2020 hasta agosto de 2020. Las bases de datos utilizadas fueron Pubmed, Virtual Health Library, ScienceDirect y la biblioteca Cochrane; se utilizaron los siguientes Medical Subject Headings (MESH): "Enterobacterales", "infection", "beta-lactamase", "beta-lactamase inhibitors", "Therapeutics", "Enterobacteriaceae/enzymology". La búsqueda electrónica dio como resultado 1.526 artículos que cumplían los criterios generales, se excluyeron 1.493 artículos; sólo 35 artículos cumplían todos los criterios de inclusión. básicamente, no hay diferencias tangibles entre el tratamiento con antibióticos betalactámicos (ya sean combinaciones o carbapenem), fluoroquinolonas, tetraciclinas y fosfomicinas en pacientes sin ninguna resistencia antibiótica preexistente. Se requiere desarrollar antibióticos, entendiendo que ellos reaccionarán y desarrollarán resistencia (hecho evolutivo). Por lo tanto, los esfuerzos para desarrollar antibióticos y estudiar los mecanismos de resistencia deben ser continuos, resilientes y constantes
Citas
Sfeir MM, Askin G, Christos P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;52(5):554-70. Available in: https://www.sciencedirect.com/science/article/pii/S0924857918302206 DOI: 10.1016/j.ijantimicag.2018.07.021 PMID 30081138
Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev [Internet]. 2020;44(2):171-88. Available in: https://doi.org/10.1093/femsre/fuaa001 DOI: 10.1093/femsre/fuaa001 PMID 31981358
Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev [Internet]. 2021;32(2):e00066-18. Available in: https://doi.org/10.1128/CMR.00066-18 DOI: 10.1128/CMR.00066-18 PMID 30651225 PMCID PMC6431132
Nørgaard SM, Jensen CS, Aalestrup J, Vandenbroucke-Grauls CMJE, de Boer MGJ, Pedersen AB. Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: a systematic review. Antimicrob Resist Infect Control [Internet]. 2019;8(1):170. Available in: https://doi.org/10.1186/s13756-019-0624-1 DOI: 10.1186/s13756-019-0624-1 PMID 31709047 PMCID PMC6830003
Leber A. Extended-Spectrum Beta-Lactamase Testing for Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis. En: Clinical Microbiology Procedures Handbook [Internet]. 4th ed. Washington DC-USA: ASM Press; 2016. p. 5.12.1-5.12.7. Available in: https://doi.org/10.1128/9781555818814.ch5.12 DOI: 10.1128/9781555818814.ch5.12
Sloan C, Edwards CJ. Extended Spectrum Beta-Lactamase. En: Frazee BW, Chin RL, Coralic Z, editores. Emergency Management of Infectious Diseases [Internet]. 2.a ed. Cambridge: Cambridge University Press; 2018. p. 552-5. Available in: https://www.cambridge.org/core/books/emergency-management-of-infectious-diseases/extended-spectrum-betalactamase/219B1529DCD7A649E6729E48DFCC1159 DOI: 10.1017/9781316597095.078
Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med [Internet]. 2016;6(8):a025247. Available in: http://perspectivesinmedicine.cshlp.org/content/6/8/a025247.long DOI: 10.1101/cshperspect.a025247 PMID 27329032 PMCID PMC4968164
Bush K. Past and Present Perspectives on β-Lactamases. Antimicrob Agents Chemother [Internet]. 2018;62(10):e01076-18. Available in: https://doi.org/10.1128/AAC.01076-18 DOI: 10.1128/AAC.01076-18 PMID 30061284 PMCID PMC6153792
Chastain DB, White BP, Cretella DA, Bland CM. Is It Time to Rethink the Notion of Carbapenem-Sparing Therapy Against Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae Bloodstream Infections? A Critical Review. Ann Pharmacother [Internet]. 2017;52(5):484-92. Available in: https://doi.org/10.1177/1060028017748943 DOI: 10.1177/1060028017748943 PMID 29239220
Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2012;67(12):2793-803. Available in: https://doi.org/10.1093/jac/dks301 DOI: 10.1093/jac/dks301 PMID 22915465
Rattanaumpawan P, Werarak P, Jitmuang A, Kiratisin P, Thamlikitkul V. Efficacy and safety of de-escalation therapy to ertapenem for treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: an open-label randomized controlled trial. BMC Infect Dis [Internet]. 2017;17(1):183. Available in: https://doi.org/10.1186/s12879-017-2284-1 DOI: 10.1186/s12879-017-2284-1 PMID 28249572 PMCID PMC5333449
Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y, Paterson DL, Almirante B, Martínez-Martínez L, et al. Ertapenem for the treatment of bloodstream infections due to ESBL-producing Enterobacteriaceae: a multinational pre-registered cohort study. J Antimicrob Chemother [Internet]. 2016;71(6):1672-80. Available in: https://doi.org/10.1093/jac/dkv502 DOI: 10.1093/jac/dkv502 PMID 26907184 PMCID PMC4867097
Son SK, Lee NR, Ko J-H, Choi JK, Moon S-Y, Joo EJ, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2018;73(10):2631-42. Available in: https://doi.org/10.1093/jac/dky168 DOI: 10.1093/jac/dky168 PMID 29800480
Pilmis B, Delory T, Groh M, Weiss E, Emirian A, Lecuyer H, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) infections: are carbapenem alternatives achievable in daily practice? Int J Infect Dis [Internet]. 2015;39:62-7. Available in: https://doi.org/10.1016/j.ijid.2015.08.011 DOI: 10.1016/j.ijid.2015.08.011 PMID 26327124
Wu U-I, Chen W-C, Yang C-S, Wang J-L, Hu F-C, Chang S-C, et al. Ertapenem in the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli: a propensity score analysis. Int J Infect Dis [Internet]. 2012;16(1):e47-52. Available in: https://doi.org/10.1016/j.ijid.2011.09.019 DOI: 10.1016/j.ijid.2011.09.019 PMID 22055248
Sharma R, Park TE, Moy S. Ceftazidime-Avibactam: A Novel Cephalosporin B-Lactamase Inhibitor Combination for the Treatment of Resistant Gram-negative Organisms. Clin Ther [Internet]. 2016;38(3):431-44. Available in: https://doi.org/10.1016/j.clinthera.2016.01.018 DOI: 10.1016/j.clinthera.2016.01.018 PMID 26948862
Che H, Wang R, Wang J, Cai Y. Ceftazidime/avibactam versus carbapenems for the treatment of infections caused by Enterobacteriaceae: A meta-analysis of randomised controlled trials. Int J Antimicrob Agents [Internet]. 2019;54(6):809-13. Available in: https://www.sciencedirect.com/science/article/pii/S092485791930250X DOI: 10.1016/j.ijantimicag.2019.09.007 PMID 31533075
Bush K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents [Internet]. 2015;46(5):483-93. Available in: https://www.sciencedirect.com/science/article/pii/S0924857915003180 DOI: 10.1016/j.ijantimicag.2015.08.011 PMID 26498989
Stone GG, Newell P, Bradfordc PA. In Vitro Activity of Ceftazidime-Avibactam against Isolates from Patients in a Phase 3 Clinical Trial for Treatment of Complicated Intra-abdominal Infections. Antimicrob Agents Chemother [Internet]. 2021;62(7):e02584-17. Available in: https://doi.org/10.1128/AAC.02584-17 DOI: 10.1128/AAC.02584-17 PMID 29686147 PMCID PMC6021638
Stone GG, Newell P, Gasink LB, Broadhurst H, Wardman A, Yates K, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother [Internet]. 2018;73(9):2519-23. Available in: https://doi.org/10.1093/jac/dky204 DOI: 10.1093/jac/dky204 PMID 29912399
Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed. Lancet Infect Dis [Internet]. 2016;16(6):661-73. Available in: https://doi.org/10.1016/S1473-3099(16)30004-4 DOI: 10.1016/S1473-3099(16)30004-4 PMID 27107460
Zhong H, Zhao X-Y, Zhang Z-L, Gu Z-C, Zhang C, Gao Y, et al. Evaluation of the efficacy and safety of ceftazidime/avibactam in the treatment of Gram-negative bacterial infections: a systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;52(4):443-50. Available in: https://www.sciencedirect.com/science/article/pii/S092485791830195X DOI: 10.1016/j.ijantimicag.2018.07.004 PMID 30012440
Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E. coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA [Internet]. 2018;320(10):984-94. Available in: https://doi.org/10.1001/jama.2018.12163 DOI: 10.1001/jama.2018.12163 PMID 30208454 PMCID PMC6143100
Liscio JL, Mahoney M V, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents [Internet]. 2015;46(3):266-71. Available in: https://www.sciencedirect.com/science/article/pii/S0924857915002034 DOI: 10.1016/j.ijantimicag.2015.05.003 PMID 26143591
Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin Infect Dis [Internet]. 2015;60(10):1462-71. Available in: https://doi.org/10.1093/cid/civ097 DOI: 10.1093/cid/civ097 PMID 25670823 PMCID PMC4412191
Sutherland CA, Nicolau DP. Susceptibility Profile of Ceftolozane/Tazobactam and Other Parenteral Antimicrobials Against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa From US Hospitals. Clin Ther [Internet]. 2015;37(7):1564-71. Available in: https://doi.org/10.1016/j.clinthera.2015.05.501 DOI: 10.1016/j.clinthera.2015.05.501 PMID 26088525
Popejoy MW, Paterson DL, Cloutier D, Huntington JA, Miller B, Bliss CA, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother [Internet]. 2017;72(1):268-72. Available in: https://doi.org/10.1093/jac/dkw374 DOI: 10.1093/jac/dkw374 PMID 27707990
Hooper DC, Jacoby GA. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med [Internet]. 2016;6(9). Available in: http://perspectivesinmedicine.cshlp.org/content/6/9/a025320.long#cited-by DOI: 10.1101/cshperspect.a025320 PMID 27449972 PMCID PMC5008060
Wiener ES, Heil EL, Hynicka LM, Johnson JK. Are Fluoroquinolones Appropriate for the Treatment of Extended-Spectrum β-Lactamase-Producing Gram-Negative Bacilli? J Pharm Technol [Internet]. 2015;32(1):16-21. Available in: https://doi.org/10.1177/8755122515599407 DOI: 10.1177/8755122515599407 PMCID PMC5998409
Punjabi C, Tien V, Meng L, Deresinski S, Holubar M. Oral Fluoroquinolone or Trimethoprim-Sulfamethoxazole vs ß-Lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-analysis. Open Forum Infect Dis [Internet]. 2019;6(10):ofz364. Available in: https://doi.org/10.1093/ofid/ofz364 DOI: 10.1093/ofid/ofz364 PMID 31412127 PMCID PMC6785705
Stewardson AJ, Vervoort J, Adriaenssens N, Coenen S, Godycki-Cwirko M, Kowalczyk A, et al. Effect of outpatient antibiotics for urinary tract infections on antimicrobial resistance among commensal Enterobacteriaceae: a multinational prospective cohort study. Clin Microbiol Infect [Internet]. 2018;24(9):972-9. Available in: https://doi.org/10.1016/j.cmi.2017.12.026 DOI: 10.1016/j.cmi.2017.12.026 PMID 29331548
Malaisri C, Phuphuakrat A, Wibulpolprasert A, Santanirand P, Kiertiburanakul S. A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Escherichia coli: A pilot study. J Infect Chemother [Internet]. 2017;23(8):556-62. Available in: https://doi.org/10.1016/j.jiac.2017.05.005 DOI: 10.1016/j.jiac.2017.05.005 PMID 28587974
Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect [Internet]. 2000;6(9):460-3. Available in: https://doi.org/10.1046/j.1469-0691.2000.00107.x DOI: 10.1046/j.1469-0691.2000.00107.x. PMID 11168179
Chukwudi CU. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother [Internet]. 2016;60(8):4433-41. Available in: https://doi.org/10.1128/AAC.00594-16 DOI: 10.1128/AAC.00594-16 PMID 27246781 PMCID PMC4958212
Solomkin JS, Sway A, Lawrence K, Olesky M, Izmailyan S, Tsai L. Eravacycline: a new treatment option for complicated intra-abdominal infections in the age of multidrug resistance. Future Microbiol [Internet]. 2019;14(15):1293-308. Available in: https://doi.org/10.2217/fmb-2019-0135 DOI: 10.2217/fmb-2019-0135 PMID 31570004
Sheu C-C, Lin S-Y, Chang Y-T, Lee C-Y, Chen Y-H, Hsueh P-R. Management of infections caused by extended-spectrum β–lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev Anti Infect Ther [Internet]. 2018;16(3):205-18. Available in: https://doi.org/10.1080/14787210.2018.1436966 DOI: 10.1080/14787210.2018.1436966. PMID 29402125
Solomkin JS, Gardovskis J, Lawrence K, Montravers P, Sway A, Evans D, et al. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin Infect Dis [Internet]. 2019;69(6):921-9. Available in: https://doi.org/10.1093/cid/ciy1029 DOI: 10.1093/cid/ciy1029 PMID 30561562 PMCID PMC6735687
Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum B-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis [Internet]. 2010;10(1):43-50. Available in: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(09)70325-1/fulltext DOI: 10.1016/S1473-3099(09)70325-1 PMID 20129148
Rosso-Fernández C, Sojo-Dorado J, Barriga A, Lavín-Alconero L, Palacios Z, López-Hernández I, et al. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): study protocol for an investigator-driven randomised controlled trial. BMJ Open [Internet]. 2015;5(3):e007363. Available in: http://bmjopen.bmj.com/content/5/3/e007363.abstract DOI: 10.1136/bmjopen-2014-007363 PMID 25829373 PMCID PMC4386243
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol [Internet]. 2019;51:72-80. Available in: https://www.sciencedirect.com/science/article/pii/S1369527419300190 DOI: 10.1016/j.mib.2019.10.008 PMID 31733401
Carrara E, Pfeffer I, Zusman O, Leibovici L, Paul M. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;51(4):548-53. Available in: https://www.sciencedirect.com/science/article/pii/S0924857917304478 DOI: 10.1016/j.ijantimicag.2017.12.013 PMID 29277528
Dubourg G, Abat C, Raoult D. Why new antibiotics are not obviously useful now. Int J Antimicrob Agents [Internet]. 2017;49(5):549-53. Available in: https://www.sciencedirect.com/science/article/pii/S0924857917300080 DOI: 10.1016/j.ijantimicag.2016.11.015 PMID 28104340
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules [Internet]. 2019;24(19):3430. Available in: https://www.mdpi.com/1420-3049/24/19/3430 DOI: 10.3390/molecules24193430 PMID 31546630 PMCID PMC6804068
Viale P, Giannella M, Tedeschi S, Lewis R. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmacol [Internet]. 2015;24:30-7. Available in: https://www.sciencedirect.com/science/article/pii/S1471489215000788 DOI: 10.1016/j.coph.2015.07.001 PMID 26210268
Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol [Internet]. 2017;133:63-73. Available in: https://www.sciencedirect.com/science/article/pii/S0006295217300187 DOI: 10.1016/j.bcp.2017.01.003 PMID 28087253
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci [Internet]. 2015;22(1):90-101. Available in: https://www.sciencedirect.com/science/article/pii/S1319562X14000941 DOI: 10.1016/j.sjbs.2014.08.002 PMID 25561890 PMCID PMC4281622
Theuretzbacher U. Antibiotic innovation for future public health needs. Clin Microbiol Infect [Internet]. 2017;23(10):713-7. Available in: https://doi.org/10.1016/j.cmi.2017.06.020 DOI: 10.1016/j.cmi.2017.06.020 PMID 28652114
Oteo J, Belén Aracil M. Caracterización de mecanismos de resistencia por biología molecular: Staphylococcus aureus resistente a meticilina, β-lactamasas de espectro extendido y carbapenemasas. Enferm Infecc Microbiol Clin [Internet]. 2015;33:27-33. Available in: https://www.sciencedirect.com/science/article/pii/S0213005X15300124 DOI: 10.1016/S0213-005X(15)30012-4 PMID 26320993
Pogue JM, Kaye KS, Cohen DA, Marchaim D. Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens. Clin Microbiol Infect [Internet]. 2015;21(4):302-12. Available in: https://doi.org/10.1016/j.cmi.2014.12.025 DOI: 10.1016/j.cmi.2014.12.025 PMID 25743999
Munita MJ, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr [Internet]. 2016;4(2):4.2.15. Available in: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 DOI: 10.1128/microbiolspec.VMBF-0016-2015 PMID 27227291 PMCID PMC4888801
Derechos de autor 2021 Carli Samira Aziz Delgado, José Andrés Mendoza Gaviria
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
La revista Kasmera se encuentra registrada bajo la licencia Creative Commons Reconocimiento 4.0 Internacional (CC BY-NC-SA 4.0), disponible en: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es; lo que garantiza la libertad de compartir-copiar y redistribuir el material en cualquier medio o formato y adaptar-remezclar, transformar y construir a partir del material, siempre que se reconozca el nombre de los autores, del Departamento de Enfermedades Infecciosas y Tropicales de la Universidad del Zulia y la revista Kasmera, también se debe proporcionar un enlace a la obra original e indicar si se han realizado cambios.
El Departamento de Enfermedades Infecciosas y Tropicales de la Universidad del Zulia y la revista Kasmera no retiene los derechos sobre las obras publicadas y los contenidos son responsabilidad exclusiva de los autores, quienes conservan sus derechos morales, intelectuales, de privacidad y publicidad. El aval sobre la intervención de la obra (revisión, corrección de estilo, traducción, diagramación) y su posterior divulgación se otorga mediante una licencia de uso y no a través de una cesión de derechos, lo que representa que la revista Kasmera y el Departamento de Enfermedades Infecciosas de la Universidad del Zulia se eximen de cualquier responsabilidad que se pueda derivar de una mala práctica ética por parte de los autores.
Kasmera se considera una revista SHERPA/RoMEO color verde, es decir que permite el autoarchivo tanto del pre-print (borrador de un trabajo) como del post-print (la versión corregida y revisada por pares) y hasta de la versión final (maquetada tal como saldrá publicada en la revista) tanto en repositorios personales como en institucionales y bases de datos.