Tratamiento en infecciones por Enterobacterales que producen betalactamasa de espectro extendido. Revisión Sistemática

  • Carli Samira Aziz Delgado Universidad de Los Andes. Facultad de Medicina. Extensión Valera. Valera-Trujillo. Venezuela https://orcid.org/0000-0001-5096-114X
  • Dr José Mendoza Gaviria Universidad de Los Andes. Facultad de Medicina. Cátedra de Microbiología. Mérida-Mérida
Palabras clave: Enterobacterales, infección, betalactamasas, inhibidores de betalactamasas, Enterobacteriaceae/enzimología, terapéutica

Resumen

Las enterobacterias productoras de betalactamasas de espectro extendido se han convertido en una pandemia a nivel mundial representando una amenaza para la salud pública debido a la alta morbilidad y mortalidad asociada a las infecciones por estas, es fundamental realizar una revisión sistemática para documentar la combinación de antibióticos utilizada para combatir las infecciones, con el fin de categorizar y ordenar los tratamientos más utilizados y determinar los más efectivos. La búsqueda electrónica se realizó desde junio de 2020 hasta agosto de 2020. Las bases de datos utilizadas fueron Pubmed, Virtual Health Library, ScienceDirect y la biblioteca Cochrane; se utilizaron los siguientes Medical Subject Headings (MESH): "Enterobacterales", "infection", "beta-lactamase", "beta-lactamase inhibitors", "Therapeutics", "Enterobacteriaceae/enzymology". La búsqueda electrónica dio como resultado 1.526 artículos que cumplían los criterios generales, se excluyeron 1.493 artículos; sólo 35 artículos cumplían todos los criterios de inclusión. básicamente, no hay diferencias tangibles entre el tratamiento con antibióticos betalactámicos (ya sean combinaciones o carbapenem), fluoroquinolonas, tetraciclinas y fosfomicinas en pacientes sin ninguna resistencia antibiótica preexistente. Se requiere desarrollar antibióticos, entendiendo que ellos reaccionarán y desarrollarán resistencia (hecho evolutivo). Por lo tanto, los esfuerzos para desarrollar antibióticos y estudiar los mecanismos de resistencia deben ser continuos, resilientes y constantes

Citas

Sfeir MM, Askin G, Christos P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;52(5):554-70. Available in: https://www.sciencedirect.com/science/article/pii/S0924857918302206 DOI: 10.1016/j.ijantimicag.2018.07.021 PMID 30081138

Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev [Internet]. 2020;44(2):171-88. Available in: https://doi.org/10.1093/femsre/fuaa001 DOI: 10.1093/femsre/fuaa001 PMID 31981358

Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev [Internet]. 2021;32(2):e00066-18. Available in: https://doi.org/10.1128/CMR.00066-18 DOI: 10.1128/CMR.00066-18 PMID 30651225 PMCID PMC6431132

Nørgaard SM, Jensen CS, Aalestrup J, Vandenbroucke-Grauls CMJE, de Boer MGJ, Pedersen AB. Choice of therapeutic interventions and outcomes for the treatment of infections caused by multidrug-resistant gram-negative pathogens: a systematic review. Antimicrob Resist Infect Control [Internet]. 2019;8(1):170. Available in: https://doi.org/10.1186/s13756-019-0624-1 DOI: 10.1186/s13756-019-0624-1 PMID 31709047 PMCID PMC6830003

Leber A. Extended-Spectrum Beta-Lactamase Testing for Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis. En: Clinical Microbiology Procedures Handbook [Internet]. 4th ed. Washington DC-USA: ASM Press; 2016. p. 5.12.1-5.12.7. Available in: https://doi.org/10.1128/9781555818814.ch5.12 DOI: 10.1128/9781555818814.ch5.12

Sloan C, Edwards CJ. Extended Spectrum Beta-Lactamase. En: Frazee BW, Chin RL, Coralic Z, editores. Emergency Management of Infectious Diseases [Internet]. 2.a ed. Cambridge: Cambridge University Press; 2018. p. 552-5. Available in: https://www.cambridge.org/core/books/emergency-management-of-infectious-diseases/extended-spectrum-betalactamase/219B1529DCD7A649E6729E48DFCC1159 DOI: 10.1017/9781316597095.078

Bush K, Bradford PA. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med [Internet]. 2016;6(8):a025247. Available in: http://perspectivesinmedicine.cshlp.org/content/6/8/a025247.long DOI: 10.1101/cshperspect.a025247 PMID 27329032 PMCID PMC4968164

Bush K. Past and Present Perspectives on β-Lactamases. Antimicrob Agents Chemother [Internet]. 2018;62(10):e01076-18. Available in: https://doi.org/10.1128/AAC.01076-18 DOI: 10.1128/AAC.01076-18 PMID 30061284 PMCID PMC6153792

Chastain DB, White BP, Cretella DA, Bland CM. Is It Time to Rethink the Notion of Carbapenem-Sparing Therapy Against Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae Bloodstream Infections? A Critical Review. Ann Pharmacother [Internet]. 2017;52(5):484-92. Available in: https://doi.org/10.1177/1060028017748943 DOI: 10.1177/1060028017748943 PMID 29239220

Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2012;67(12):2793-803. Available in: https://doi.org/10.1093/jac/dks301 DOI: 10.1093/jac/dks301 PMID 22915465

Rattanaumpawan P, Werarak P, Jitmuang A, Kiratisin P, Thamlikitkul V. Efficacy and safety of de-escalation therapy to ertapenem for treatment of infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: an open-label randomized controlled trial. BMC Infect Dis [Internet]. 2017;17(1):183. Available in: https://doi.org/10.1186/s12879-017-2284-1 DOI: 10.1186/s12879-017-2284-1 PMID 28249572 PMCID PMC5333449

Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y, Paterson DL, Almirante B, Martínez-Martínez L, et al. Ertapenem for the treatment of bloodstream infections due to ESBL-producing Enterobacteriaceae: a multinational pre-registered cohort study. J Antimicrob Chemother [Internet]. 2016;71(6):1672-80. Available in: https://doi.org/10.1093/jac/dkv502 DOI: 10.1093/jac/dkv502 PMID 26907184 PMCID PMC4867097

Son SK, Lee NR, Ko J-H, Choi JK, Moon S-Y, Joo EJ, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2018;73(10):2631-42. Available in: https://doi.org/10.1093/jac/dky168 DOI: 10.1093/jac/dky168 PMID 29800480

Pilmis B, Delory T, Groh M, Weiss E, Emirian A, Lecuyer H, et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) infections: are carbapenem alternatives achievable in daily practice? Int J Infect Dis [Internet]. 2015;39:62-7. Available in: https://doi.org/10.1016/j.ijid.2015.08.011 DOI: 10.1016/j.ijid.2015.08.011 PMID 26327124

Wu U-I, Chen W-C, Yang C-S, Wang J-L, Hu F-C, Chang S-C, et al. Ertapenem in the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli: a propensity score analysis. Int J Infect Dis [Internet]. 2012;16(1):e47-52. Available in: https://doi.org/10.1016/j.ijid.2011.09.019 DOI: 10.1016/j.ijid.2011.09.019 PMID 22055248

Sharma R, Park TE, Moy S. Ceftazidime-Avibactam: A Novel Cephalosporin B-Lactamase Inhibitor Combination for the Treatment of Resistant Gram-negative Organisms. Clin Ther [Internet]. 2016;38(3):431-44. Available in: https://doi.org/10.1016/j.clinthera.2016.01.018 DOI: 10.1016/j.clinthera.2016.01.018 PMID 26948862

Che H, Wang R, Wang J, Cai Y. Ceftazidime/avibactam versus carbapenems for the treatment of infections caused by Enterobacteriaceae: A meta-analysis of randomised controlled trials. Int J Antimicrob Agents [Internet]. 2019;54(6):809-13. Available in: https://www.sciencedirect.com/science/article/pii/S092485791930250X DOI: 10.1016/j.ijantimicag.2019.09.007 PMID 31533075

Bush K. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents [Internet]. 2015;46(5):483-93. Available in: https://www.sciencedirect.com/science/article/pii/S0924857915003180 DOI: 10.1016/j.ijantimicag.2015.08.011 PMID 26498989

Stone GG, Newell P, Bradfordc PA. In Vitro Activity of Ceftazidime-Avibactam against Isolates from Patients in a Phase 3 Clinical Trial for Treatment of Complicated Intra-abdominal Infections. Antimicrob Agents Chemother [Internet]. 2021;62(7):e02584-17. Available in: https://doi.org/10.1128/AAC.02584-17 DOI: 10.1128/AAC.02584-17 PMID 29686147 PMCID PMC6021638

Stone GG, Newell P, Gasink LB, Broadhurst H, Wardman A, Yates K, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother [Internet]. 2018;73(9):2519-23. Available in: https://doi.org/10.1093/jac/dky204 DOI: 10.1093/jac/dky204 PMID 29912399

Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed. Lancet Infect Dis [Internet]. 2016;16(6):661-73. Available in: https://doi.org/10.1016/S1473-3099(16)30004-4 DOI: 10.1016/S1473-3099(16)30004-4 PMID 27107460

Zhong H, Zhao X-Y, Zhang Z-L, Gu Z-C, Zhang C, Gao Y, et al. Evaluation of the efficacy and safety of ceftazidime/avibactam in the treatment of Gram-negative bacterial infections: a systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;52(4):443-50. Available in: https://www.sciencedirect.com/science/article/pii/S092485791830195X DOI: 10.1016/j.ijantimicag.2018.07.004 PMID 30012440

Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E. coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA [Internet]. 2018;320(10):984-94. Available in: https://doi.org/10.1001/jama.2018.12163 DOI: 10.1001/jama.2018.12163 PMID 30208454 PMCID PMC6143100

Liscio JL, Mahoney M V, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents [Internet]. 2015;46(3):266-71. Available in: https://www.sciencedirect.com/science/article/pii/S0924857915002034 DOI: 10.1016/j.ijantimicag.2015.05.003 PMID 26143591

Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin Infect Dis [Internet]. 2015;60(10):1462-71. Available in: https://doi.org/10.1093/cid/civ097 DOI: 10.1093/cid/civ097 PMID 25670823 PMCID PMC4412191

Sutherland CA, Nicolau DP. Susceptibility Profile of Ceftolozane/Tazobactam and Other Parenteral Antimicrobials Against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa From US Hospitals. Clin Ther [Internet]. 2015;37(7):1564-71. Available in: https://doi.org/10.1016/j.clinthera.2015.05.501 DOI: 10.1016/j.clinthera.2015.05.501 PMID 26088525

Popejoy MW, Paterson DL, Cloutier D, Huntington JA, Miller B, Bliss CA, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother [Internet]. 2017;72(1):268-72. Available in: https://doi.org/10.1093/jac/dkw374 DOI: 10.1093/jac/dkw374 PMID 27707990

Hooper DC, Jacoby GA. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med [Internet]. 2016;6(9). Available in: http://perspectivesinmedicine.cshlp.org/content/6/9/a025320.long#cited-by DOI: 10.1101/cshperspect.a025320 PMID 27449972 PMCID PMC5008060

Wiener ES, Heil EL, Hynicka LM, Johnson JK. Are Fluoroquinolones Appropriate for the Treatment of Extended-Spectrum β-Lactamase-Producing Gram-Negative Bacilli? J Pharm Technol [Internet]. 2015;32(1):16-21. Available in: https://doi.org/10.1177/8755122515599407 DOI: 10.1177/8755122515599407 PMCID PMC5998409

Punjabi C, Tien V, Meng L, Deresinski S, Holubar M. Oral Fluoroquinolone or Trimethoprim-Sulfamethoxazole vs ß-Lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-analysis. Open Forum Infect Dis [Internet]. 2019;6(10):ofz364. Available in: https://doi.org/10.1093/ofid/ofz364 DOI: 10.1093/ofid/ofz364 PMID 31412127 PMCID PMC6785705

Stewardson AJ, Vervoort J, Adriaenssens N, Coenen S, Godycki-Cwirko M, Kowalczyk A, et al. Effect of outpatient antibiotics for urinary tract infections on antimicrobial resistance among commensal Enterobacteriaceae: a multinational prospective cohort study. Clin Microbiol Infect [Internet]. 2018;24(9):972-9. Available in: https://doi.org/10.1016/j.cmi.2017.12.026 DOI: 10.1016/j.cmi.2017.12.026 PMID 29331548

Malaisri C, Phuphuakrat A, Wibulpolprasert A, Santanirand P, Kiertiburanakul S. A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Escherichia coli: A pilot study. J Infect Chemother [Internet]. 2017;23(8):556-62. Available in: https://doi.org/10.1016/j.jiac.2017.05.005 DOI: 10.1016/j.jiac.2017.05.005 PMID 28587974

Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect [Internet]. 2000;6(9):460-3. Available in: https://doi.org/10.1046/j.1469-0691.2000.00107.x DOI: 10.1046/j.1469-0691.2000.00107.x. PMID 11168179

Chukwudi CU. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Antimicrob Agents Chemother [Internet]. 2016;60(8):4433-41. Available in: https://doi.org/10.1128/AAC.00594-16 DOI: 10.1128/AAC.00594-16 PMID 27246781 PMCID PMC4958212

Solomkin JS, Sway A, Lawrence K, Olesky M, Izmailyan S, Tsai L. Eravacycline: a new treatment option for complicated intra-abdominal infections in the age of multidrug resistance. Future Microbiol [Internet]. 2019;14(15):1293-308. Available in: https://doi.org/10.2217/fmb-2019-0135 DOI: 10.2217/fmb-2019-0135 PMID 31570004

Sheu C-C, Lin S-Y, Chang Y-T, Lee C-Y, Chen Y-H, Hsueh P-R. Management of infections caused by extended-spectrum β–lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev Anti Infect Ther [Internet]. 2018;16(3):205-18. Available in: https://doi.org/10.1080/14787210.2018.1436966 DOI: 10.1080/14787210.2018.1436966. PMID 29402125

Solomkin JS, Gardovskis J, Lawrence K, Montravers P, Sway A, Evans D, et al. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin Infect Dis [Internet]. 2019;69(6):921-9. Available in: https://doi.org/10.1093/cid/ciy1029 DOI: 10.1093/cid/ciy1029 PMID 30561562 PMCID PMC6735687

Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum B-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis [Internet]. 2010;10(1):43-50. Available in: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(09)70325-1/fulltext DOI: 10.1016/S1473-3099(09)70325-1 PMID 20129148

Rosso-Fernández C, Sojo-Dorado J, Barriga A, Lavín-Alconero L, Palacios Z, López-Hernández I, et al. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): study protocol for an investigator-driven randomised controlled trial. BMJ Open [Internet]. 2015;5(3):e007363. Available in: http://bmjopen.bmj.com/content/5/3/e007363.abstract DOI: 10.1136/bmjopen-2014-007363 PMID 25829373 PMCID PMC4386243

Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol [Internet]. 2019;51:72-80. Available in: https://www.sciencedirect.com/science/article/pii/S1369527419300190 DOI: 10.1016/j.mib.2019.10.008 PMID 31733401

Carrara E, Pfeffer I, Zusman O, Leibovici L, Paul M. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2018;51(4):548-53. Available in: https://www.sciencedirect.com/science/article/pii/S0924857917304478 DOI: 10.1016/j.ijantimicag.2017.12.013 PMID 29277528

Dubourg G, Abat C, Raoult D. Why new antibiotics are not obviously useful now. Int J Antimicrob Agents [Internet]. 2017;49(5):549-53. Available in: https://www.sciencedirect.com/science/article/pii/S0924857917300080 DOI: 10.1016/j.ijantimicag.2016.11.015 PMID 28104340

Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules [Internet]. 2019;24(19):3430. Available in: https://www.mdpi.com/1420-3049/24/19/3430 DOI: 10.3390/molecules24193430 PMID 31546630 PMCID PMC6804068

Viale P, Giannella M, Tedeschi S, Lewis R. Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmacol [Internet]. 2015;24:30-7. Available in: https://www.sciencedirect.com/science/article/pii/S1471489215000788 DOI: 10.1016/j.coph.2015.07.001 PMID 26210268

Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol [Internet]. 2017;133:63-73. Available in: https://www.sciencedirect.com/science/article/pii/S0006295217300187 DOI: 10.1016/j.bcp.2017.01.003 PMID 28087253

Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci [Internet]. 2015;22(1):90-101. Available in: https://www.sciencedirect.com/science/article/pii/S1319562X14000941 DOI: 10.1016/j.sjbs.2014.08.002 PMID 25561890 PMCID PMC4281622

Theuretzbacher U. Antibiotic innovation for future public health needs. Clin Microbiol Infect [Internet]. 2017;23(10):713-7. Available in: https://doi.org/10.1016/j.cmi.2017.06.020 DOI: 10.1016/j.cmi.2017.06.020 PMID 28652114

Oteo J, Belén Aracil M. Caracterización de mecanismos de resistencia por biología molecular: Staphylococcus aureus resistente a meticilina, β-lactamasas de espectro extendido y carbapenemasas. Enferm Infecc Microbiol Clin [Internet]. 2015;33:27-33. Available in: https://www.sciencedirect.com/science/article/pii/S0213005X15300124 DOI: 10.1016/S0213-005X(15)30012-4 PMID 26320993

Pogue JM, Kaye KS, Cohen DA, Marchaim D. Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens. Clin Microbiol Infect [Internet]. 2015;21(4):302-12. Available in: https://doi.org/10.1016/j.cmi.2014.12.025 DOI: 10.1016/j.cmi.2014.12.025 PMID 25743999

Munita MJ, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr [Internet]. 2016;4(2):4.2.15. Available in: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 DOI: 10.1128/microbiolspec.VMBF-0016-2015 PMID 27227291 PMCID PMC4888801

Publicado
2021-10-03
Cómo citar
1.
Aziz Delgado CS, Mendoza Gaviria JA. Tratamiento en infecciones por Enterobacterales que producen betalactamasa de espectro extendido. Revisión Sistemática. Kasmera [Internet]. 3 de octubre de 2021 [citado 19 de abril de 2024];49(2):e49235056. Disponible en: https://produccioncientificaluz.org/index.php/kasmera/article/view/35056
Sección
Revisiones Sistemáticas y/o Metaanálisis