Resistencia enzimática a betalactámicos en Enterobacterales uropatógenos

  • Carmen Alejandra Ullauri González Universidad Nacional de Loja. Carrera de Laboratorio Clínico. Cátedra de Microbiología. Loja-Loja Ecuador http://orcid.org/0000-0002-8555-7996
Palabras clave: Enterobacterales, betalactámicos, betalactamasas, resistencia betalactámica, Enterobacteriaceae resistentes a los carbapenémicos, infecciones urinarias

Resumen

El objetivo de este estudio fue detectar la presencia de betalactamasas de espectro extendido y carbapenemasas en Enterobacterales uropatógenos aislados en el Hospital General “Isidro Ayora”, Loja (Ecuador), durante el periodo diciembre 2017- julio 2018. De 323 cepas aisladas, 90 (27,86%) resultaron productoras de betalactamasas de espectro extendido y 6 (1,86%), fueron positivas para carbapenemasas; siendo Escherichia coli el microorganismo más frecuentemente productor de betalactamasas de espectro extendido (77,08%) y Klebsiella pneumoniae de carbapenemasas (4,16%). Para las betalactamasas de espectro extendido, el gen blaCTX-M fue el más frecuente (67,77%); seguido de blaTEM (61,11%) y finalmente, blaSHV, (20,00%); mientras que, blaKPC se detectó en todas las cepas positivas para carbapenemasas. El mayor porcentaje de aislamiento de bacterias portadoras de ambos tipos de betalactamasas se obtuvo de pacientes ambulatorios (85,56%) en comparación con los hospitalizados (66,67%). Se detectó diferencia significativa entre estas enzimas debido al sexo, tipo y servicio de atención al paciente, tipo de betalactamasa de espectro extendido y microorganismo (p ≤ 0,05). Ninguna cepa resultó productora de ambos tipos de betalactamasas. Existe una elevada frecuencia de cepas productoras de betalactamasas de espectro extendido y una baja frecuencia de cepas productoras de carbapenemasas como agentes uropatógenos en la población estudiada

Citas

Sohail M, Khurshid M, Saleem H, Javed H, Khan A. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. Jundishapur J Microbiol. 2015;8(7):e19272. doi: 10.5812/jjm.19272v2.

Azargun R, Sadeghi M, Soroush Barhaghi M, Samadi Kafil H, Yeganeh F, Ahangar Oskouee M, et al. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections. Infect Drug Resist. 2018;11:1007-1014. doi: 10.2147/IDR.S160720.

Abujnah A, Zorgani A, Sabri M, El-Mohammady H, Khalek R, Ghenghesh K. Multidrug resistance and extended-spectrum β-lactamases genes among Escherichia coli from patients with urinary tract infections in Northwestern Libya. Libyan J Med. 2015;10:26412. doi: 10.3402/ljm.v10.26412.

Tayh G, Al Laham N, Ben Yahia H, Ben Sallem R, Elottol A, Ben Slama K. Extended-spectrum β-lactamases among Enterobacteriaceae isolated from urinary tract infections in Gaza Strip, Palestine. Biomed Res Int. 2019;2019:4041801. doi: 10.1155/2019/4041801.

Gajdács M, Urbán E. Resistance trends and epidemiology of Citrobacter-Enterobacter-Serratia in urinary tract infections of inpatients and outpatients (RECESUTI): A 10-Year Survey. Medicina. 2019;55:285. doi:10.3390/medicina55060285.

Aouf A, Gueddi T, Djeghout B, Ammari H. Frequency and susceptibility pattern of uropathogenic Enterobacteriaceae isolated from patients in Algiers, Algeria. J Infect Dev Ctries. 2018;12(4):244-249. doi: 10.3855/jidc.10017.

Sheu C, Lin S, Chang Y, Lee C, Chen Y, Hsueh P. Management of infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: current evidence and future prospects. Expert Rev Anti Infect Ther. 2018;16(3):205-218. doi: 10.1080/14787210.2018.1436966.

Lutgring J. Carbapenem-resistant Enterobacteriaceae: An emerging bacterial threat. Semin Diagn Pathol. 2019;36(3):182-186. doi: 10.1053/j.semdp.2019.04.011.

Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis. 2018;18(1):56. doi: 10.1186/s12879-018-2960-9.

Bitew A, Molalign T, Chanie M. Species distribution and antibiotic susceptibility profile of bacterial uropathogens among patients complaining urinary tract infections. BMC Infect Dis. 2017;17(1):654. doi: 10.1186/s12879-017-2743-8.

Seyedjavadi S, Goudarzi M, Sabzehali F. Relation between blaTEM, blaSHV and blaCTX-M genes and acute urinary tract infections. J. Acute Dis. 2016;5(1):71-76. doi: 0.1016/j.joad.2015.07.007.

Abd El Ghany M, Sharaf H, Al-Agamy M, Shibl A, Hill-Cawthorne G, Hong P. Genomic characterization of NDM-1 and 5, and OXA-181 carbapenemases in uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS One. 2018;13(8):e0201613. doi: 10.1371/journal.pone.0201613.

Vera-Leiva A, Barría-Loaiza C, Carrasco-Anabalón S, Lima C, Aguayo-Reyes A, Domínguez M, et al. KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias. Rev Chilena Infectol. 2017;34(5):476-484. doi: 10.4067/S0716-10182017000500476.

Lyman M, Walters M, Lonsway D, Rasheed K, Limbago B, Kallen A. Notes from the field: Carbapenem-resistant Enterobacteriaceae producing OXA-48-like carbapenemases - United States, 2010-2015. (Erratum: MMWR Morb Mortal Wkly Rep. 2015;64(47):1350). MMWR Morb Mortal Wkly Rep. 2015;64(47):1315-6. doi: 10.15585/mmwr.mm6447a3.

Birgy A, Madhi F, Jung C, Levy C, Cointe A, Bidet P, et al. Diversity and trends in population structure of ESBL-producing Enterobacteriaceae in febrile urinary tract infections in children in France from 2014 to 2017. J Antimicrob Chemother. 2020;75(1):96-105. doi: 10.1093/jac/dkz423.

Seo Y, Lee J, Kim Y, Lee S, Lee J, Kim H. Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli. BMC Infect Dis. 2017;17(1):404. doi: 10.1186/s12879-017-2502-x.

Kelly A, Mathema B, Larson E. Carbapenem-resistant Enterobacteriaceae in the community: a scoping review. Int J Antimicrob Agents. 2017 Aug;50(2):127-134. doi: 10.1016/j.ijantimicag.2017.03.012.

Pachay Solórzano J. Las infecciones bacterianas y su resistencia a los antibióticos. Caso de estudio: Hospital Oncológico “Dr. Julio Villacreses Colmont Solca”, Portoviejo. Universidad y Sociedad. 2018;10(5): 219-223. Disponible en: http://rus.ucf.edu.cu/index.php/rus. Acceso: 20/12/2019.

Iñiguez J, Alcocer I, Ortega D, Gómez A, Maldonado L. Klebsiella pneumoniae productora de carbapenemasa tipo KPC-2: primer reporte en el Ecuador. Rev Fac Cien Med (Quito) 2012; 37: 39-41. Disponible en: http://www.researchgate.net/publication/263198827. Acceso: 201/12/2019.

Hernández Sampieri R, Fernández Collado C, Baptista Lucio P. Metodología de la Investigación. Sexta Edición. McGraw-Hill/Interamericana Editores, S.A. de C.V. México, D.F. 2014. 634 p.

CLSI. Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI Supplement M100. Wayne, P. A. Clinical Laboratory Standards Institute, 2018. 296 p.

Satán Salazar C, Tamayo Trujillo R. Epidemiología molecular de Klebsiella pneumoniae productora del gen blaKPC, mediante las técnicas de PFGE y MLST, en cepas de muestras invasivas analizadas en el INSPI-Quito en el periodo 2013-2014. Disertación previa a la obtención del Título de Bioquímica Clínica. Escuela de Bioanálisis. Pontificia Universidad Católica del Ecuador. Quito. 2016. 118 p.

Ley Orgánica de Salud. Norma: Ley # 67. Registro Oficial Suplemento # 423. 2006. San Francisco de Quito, Distrito Metropolitano, Ecuador. Disponible en: http://www.cicad.oas.org/fortalecimiento_institucional/legislations/PDF/EC/ley_organica_de_salud.pdf. Acceso: 20/10/2017.

Asamblea de la Asociación Médica Mundial. 2013. Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas en seres humanos. 64ª Asamblea General, Fortaleza, Brasil. Disponible en: https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/. Acceso: 20/10/2017.

Organización Panamericana de la Salud y Consejo de Organizaciones Internacionales de las Ciencias Médica. Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos, Cuarta Edición. Ginebra: Consejo de Organizaciones Internacionales de las Ciencias Médicas (CIOMS); 2016. Disponible en: https://cioms.ch/wp-content/uploads/2017/12/CIOMS-EthicalGuideline_SP_INTERIOR-FINAL.pdf. Acceso: 20/10/2017.

Baizet C, Ouar-Epelboin S, Walter G, Mosnier E, Moreau B, Djossou F, et al. Decreased antibiotic susceptibility of Enterobacteriaceae causing community-acquired urinary tract infections in French Amazonia. Med Mal Infect. 2019;49(1):63-68. doi: 10.1016/j.medmal.2018.09.009.

Bader M, Loeb M, Brooks A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med. 2017;129(2):242-258. doi: 10.1080/00325481.2017.1246055.

Alevizakos M, Nasioudis D, Mylonakis E. Urinary tract infections caused by ESBL-producing Enterobacteriaceae in renal transplant recipients: A systematic review and meta-analysis. Transpl Infect Dis. 2017;19(6). doi: 10.1111/tid.12759.

Holmes A, Moore L, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176-187. doi: 10.1016/S0140-6736(15)00473-0.

Watkins R, Bonomo R. Overview: Global and local impact of antibiotic resistance. Infect Dis Clin North Am. 2016;30:313-322. doi: 10.1016/j.idc.2016.02.001.

Adamus-Białek W, Baraniak A, Wawszczak M, Głuszek S, Gad B, Wróbel K, et al. The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains. Mol Biol Rep. 2018 Oct;45(5):1055-1065. doi: 10.1007/s11033-018-4254-0.

Al-Jamei S, Albsoul A, Bakri F, Al-Bakri A. Extended-spectrum β-lactamase producing E. coli in urinary tract infections: A two-center, cross-sectional study of prevalence, genotypes and risk factors in Amman, Jordan. J Infect Public Health. 2019;12(1):21-25. doi: 10.1016/j.jiph.2018.07.011.

Damavandi M, Gholipour A, Latif Pour M. Prevalence of Class D Carbapenemases among Extended-Spectrum β-Lactamases Producing Escherichia coli Isolates from Educational Hospitals in Shahrekord. J Clin Diagn Res. 2016;10(5):DC01-5. doi: 10.7860/JCDR/2016/17722.7739.

Galindo-Méndez M. Caracterización molecular y patrón de susceptibilidad antimicrobiana de Escherichia coli productora de β-lactamasas de espectro extendido en infección del tracto urinario adquirida en la comunidad. Rev Chilena Infectol. 2018;35(1):29-35. doi: 10.4067/s0716-10182018000100029.

Eshetie S, Unakal C, Gelaw A, Ayelign B, Endris M, Moges F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrob Resist Infect Control. 2015 Apr 17;4:12. doi: 10.1186/s13756-015-0054-7.

Anesi J, Lautenbach E, Nachamkin I, Garrigan C, Bilker W, Omorogbe J, et al. The role of extended-spectrum cephalosporin-resistance in recurrent community-onset Enterobacteriaceae urinary tract infections: a retrospective cohort study. BMC Infect Dis. 2019;19(1):163. doi: 10.1186/s12879-019-3804-y.

Goyal D, Dean N, Neill S, Jones P, Dascomb K. Risk factors for community-acquired extended-spectrum beta-Lactamase-producing Enterobacteriaceae infections- A retrospective study of symptomatic urinary tract infections. Open Forum Infect Dis. 2019;6(2):ofy357. doi: 10.1093/ofid/ofy357.

Alexandre K, Réveillon-Istin M, Fabre R, Delbos V, Etienne M, Pestel-Caron M, et al. Temocillin against Enterobacteriaceae isolates from community-acquired urinary tract infections: low rate of resistance and good accuracy of routine susceptibility testing methods. J Antimicrob Chemother. 2018;73(7):1848-1853. doi: 10.1093/jac/dky101.

Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front Microbiol. 2019;10:1823. doi: 10.3389/fmicb.2019.01823. JAMA. 2015 Oct 13;314(14):1479-87. doi: 10.1001/jama.2015.12480.

Bouxom H, Fournier D, Bouiller K, Hocquet D, Bertrand X. Which non-carbapenem antibiotics are active against extended-spectrum β-lactamase-producing Enterobacteriaceae?. Int J Antimicrob Agents. 2018;52(1):100-103. doi: 10.1016/j.ijantimicag.2018.03.014.

Gajamer V, Bhattacharjee A, Paul D, Deshamukhya C, Singh A, Pradhan N, et al. Escherichia coli encoding blaNDM-5 associated with community-acquired urinary tract infections with unusual MIC creep-like phenomenon against imipenem. J Glob Antimicrob Resist. 2018;14:228-232. doi: 10.1016/j.jgar.2018.05.004.

Jamil J, Haroon M, Sultan A, Khan M, Gul N; Kalsoom. Prevalence, antibiotic sensitivity and phenotypic screening of ESBL/MBL producer E. coli strains isolated from urine; District Swabi, KP, Pakistan. J Pak Med Assoc. 2018;68(11):1704-1707.

Jean S, Hsueh P on behalf of the SMART Asia-Pacific Group. Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–14: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J Antimicrob Chemother.;2016:doi:10.1093/jac/dkw398.

López-González L, Candel F, Viñuela-Prieto J, González-Del Castillo J, García A, Pena I, et al. Useful independent factors for distinguish infection and colonization in patients with urinary carbapenemase-producing Enterobacteriaceae isolation. Rev Esp Quimioter. 2017;30(6):450-457.

Almomani B, Hayajneh W, Ayoub A, Ababneh M, Al Momani M. Clinical patterns, epidemiology and risk factors of community-acquired urinary tract infection caused by extended-spectrum beta-lactamase producers: a prospective hospital case-control study. Infection. 2018;46(4):495-501. doi: 10.1007/s15010-018-1148-y.

Fatima S, Muhammad I, Usman S, Jamil S, Khan M, Khan S. Incidence of multidrug resistance and extended-spectrum beta-lactamase expression in community-acquired urinary tract infection among different age groups of patients. Indian J Pharmacol. 2018;50(2):69-74. doi: 10.4103/ijp.IJP_200_17.

Daoud Z, Salem Sokhn E, Masri K, Matar G, Doron S. Escherichia coli isolated from urinary tract infections of Lebanese patients between 2005 and 2012: Epidemiology and profiles of resistance. (Corrigendum: Front Med (Lausanne). 2015;2:66. doi: 10.3389/fmed.2015.00066). Front Med (Lausanne). 2015;2:26. doi: 10.3389/fmed.2015.00026.

Ranjan Dash N, Albataineh M, Alhourani N, Khoudeir A, Ghanim M, Wasim M, Mahmoud I. Community-acquired urinary tract infections due to extended-spectrum β-lactamase-producing organisms in United Arab Emirates. Travel Med Infect Dis. 2018;22:46-50. doi: 10.1016/j.tmaid.2018.01.007.

Aslan A, Akova M. Extended spectrum β-lactamase producing Enterobacteriaceae: carbapenem sparing options. Expert Rev Anti Infect Ther. 2019;17(12):969-981. doi: 10.1080/14787210.2019.1693258.

Cristea V, Gheorghe I, Czobor Barbu I, Popa L, Ispas B, Grigore G, et al. Snapshot of phylogenetic groups, virulence, and resistance markers in Escherichia coli uropathogenic strains isolated from outpatients with urinary tract infections in Bucharest, Romania. Biomed Res Int. 2019;2019:5712371. doi: 10.1155/2019/5712371.

Donkor E, Horlortu P, Dayie N, Obeng-Nkrumah N, Labi A. Community acquired urinary tract infections among adults in Accra, Ghana. Infect Drug Resist. 2019;12:2059-2067. doi: 10.2147/IDR.S204880.

Eltai N, Al Thani A, Al-Ansari K, Deshmukh A, Wehedy E, Al-Hadidi S, et al. Molecular characterization of extended spectrum β -lactamases Enterobacteriaceae causing lower urinary tract infection among pediatric population. Antimicrob Resist Infect Control. 2018;7:90. doi: 10.1186/s13756-018-0381-6.

Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Clonal relationships, antimicrobial susceptibilities, and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolates from urinary tract infections and fecal samples in Southeast Iran. Rev Soc Bras Med Trop. 2018;51(1):44-51. doi: 10.1590/0037-8682-0080-2017.

Mahrach Y, Mourabit N, Arakrak A, Bakkali M, Laglaoui M. Phenotypic and molecular study of carbapenemase-producing Enterobacteriaceae in a regional hospital in Northern Morocco. J Clin Med Sci. 2019;3(1):113.

Guh A, Bulens S, Mu Y, Jacob J, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US Communities, 2012-2013. JAMA. 2015;314(14):1479-87. doi: 10.1001/jama.2015.12480.

Publicado
2021-07-01
Cómo citar
1.
Ullauri González CA. Resistencia enzimática a betalactámicos en Enterobacterales uropatógenos. Kasmera [Internet]. 1 de julio de 2021 [citado 20 de septiembre de 2021];49(2):e49234109. Disponible en: https://produccioncientificaluz.org/index.php/kasmera/article/view/34109
Sección
Artículos Originales