Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1

Palabras clave: VIH-1, lipoproteínas de alta densidad, ABCA, inflamación.

Resumen

Considerando que la terapia antirretroviral no logra controlar la activación inmune que ocurre durante la infección por VIH-1, el estudio de moléculas inmunomoduladoras puede proporcionar estrategias alternativas para su control. En este sentido, este estudio busca evaluar la expresión transcripcional de moléculas asociadas con el metabolismo de las lipoproteínas de alta densidad y con la respuesta inflamatoria mediada por el inflamasoma NLRP3 en pacientes VIH-1. Este es un estudio transversal, donde se incluyeron 23 pacientes VIH-1 sin tratamiento antirretroviral, con diferentes estadios de progresión, 7 de los cuales son controladores (Carga viral <2000 copias/mL) y 16 progresores (Carga viral >2000 copias/mL), además de 7 controles sanos. En células mononucleares de sangre periférica, se cuantificaron los niveles de la expresión transcripcional de ABCA-1, ABCA-3, Caspasa-5 y TXNIP mediante RT-PCR. Se evaluó la asociación de estos parámetros con variables clínicas y demográficas y se encontró que los individuos VIH-1 progresores mostraron niveles significativamente menores de TXNIP y ABCA-3, sugiriendo que durante la infección por VIH-1 se produce una alteración en la expresión de estas moléculas. Dada la complejidad de las interacciones inmuno-metabólicas durante la infección por VIH-1, se necesitan estudios adicionales para establecer los mecanismos precisos involucrados en estas alteraciones.

Citas

ONUSIDA [Internet]. [citado 17 de julio de 2020]. Disponible en: https://www.unaids.org/es

Perdomo-Celis F, Taborda NA, Rugeles MT. Circulating CXCR5-expressing CD8+ T-cells are major producers of IL-21 and associate with limited HIV replication. J Acquir Immune Defic Syndr [Internet]. 2018 [citado 16 de agosto de 2020];78(4):473-82. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29649077/. doi: 10.1097/QAI.0000000000001700 PMID: 29649077

Taborda NA, Gonzalez SM, Correa LA, Montoya CJ, Rugeles MT. Spontaneous HIV controllers exhibit preserved immune parameters in peripheral blood and gastrointestinal mucosa. J Acquir Immune Defic Syndr [Internet]. 1 de octubre de 2015 [citado 16 de agosto de 2020];70(2):115-21. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26102449/. doi: 10.1097/QAI.0000000000000729 PMID: 10779450

Taborda NA, González SM, Alvarez CM, Correa LA, Montoya CJ, Rugeles MT. Higher frequency of NK and CD4+ T-cells in mucosa and potent cytotoxic response in HIV controllers. PLoS One [Internet]. 20 de agosto de 2015 [citado 16 de agosto de 2020];10(8). Disponible en: https://pubmed.ncbi.nlm.nih.gov/26291824/. doi: 10.1371/journal.pone.0136292 PMID: 26291824

Feria MG, Taborda NA, Hernandez JC, Rugeles MT. HIV replication is associated to inflammasomes activation, IL-1β, IL-18 and caspase-1 expression in GALT and peripheral blood. PLoS One. 1 de abril de 2018;13(4). doi: 10.1371/journal.pone.0192845 PMID: 19326203

Borrow P. Innate immunity in acute HIV-1 infection. Curr Opin HIV AIDS. septiembre de 2011;6(5):353-63. doi: 10.1097/COH.0b013e3283495996

Abad-Fernández M, Vallejo A, Hernández-Novoa B, Díaz L, Gutiérrez C, Madrid N, et al. Correlation between different methods to measure microbial translocation and its association with immune activation in long-term suppressed HIV-1-infected individuals. J Acquir Immune Defic Syndr. 1 de octubre de 2013;64(2):149-53. doi: 10.1097/QAI.0b013e31829a2f12

Boasso A, Shearer GM. Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Vol. 126, Clinical Immunology. 2008. p. 235-42. doi: 10.1016/j.clim.2007.08.015

Merlini E, Luzi K, Suardi E, Barassi A, Cerrone M, Martínez JS, et al. T-Cell Phenotypes, Apoptosis and Inflammation in HIV+ Patients on Virologically Effective cART with Early Atherosclerosis. Pett S, editor. PLoS One [Internet]. 27 de septiembre de 2012;7(9):e46073. Disponible en: http://dx.plos.org/10.1371/journal.pone.0046073 doi: 10.1371/journal.pone.0046073

Montoya C, Moreno ME, Rugules MT. Reacciones y alteraciones del sistema inmune durante la infección por el VIH-1. Infectio [Internet]. 2006;10(4). Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922006000400008

Chong CR, Chan WP in. A, Nguyen TH, Liu S, Procter NEK, Ngo DT, et al. Thioredoxin-interacting protein: pathophysiology and emerging pharmacotherapeutics in cardiovascular disease and diabetes. Cardiovasc Drugs Ther. 1 de agosto de 2014;28(4):347-60. doi: 10.1007/s10557-014-6538-5

Višković K, Židovec Lepej S, Gorenec A, Grgić I, Lukas D, Zekan Š, et al. Cardiovascular markers of inflammation and serum lipid levels in HIV-infected patients with undetectable viremia. Sci Rep. 1 de diciembre de 2018;8(1). doi: 10.1038/s41598-018-24446-4 PMID: 25394055

Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. febrero de 2010;11(2):136-40. doi: 10.1038/ni.1831

Kim DO, Byun JE, Seong HA, Yoon SR, Choi I, Jung H. Thioredoxin-interacting protein-derived peptide (TN13) inhibits LPS-induced inflammation by inhibiting p38 MAPK signaling. Biochem Biophys Res Commun. 9 de diciembre de 2018;507(1-4):489-95. doi: 10.1016/j.bbrc.2018.11.069

He K, Zhu X, Liu Y, Miao C, Wang T, Li P, et al. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget. 2017;8(23):37657-72. doi: 10.18632/oncotarget.17489

Viganò E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun. 28 de octubre de 2015;6. doi: 10.1038/ncomms9761

Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 1 de mayo de 2017;277(1):61-75. doi: 10.1111/imr.12534

Pillon NJ, Chan KL, Zhang S, Mejdani M, Jacobson MR, Ducos A, et al. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release. Am J Physiol - Endocrinol Metab. 2016;311(5):E825-35. doi: 10.1152/ajpendo.00296.2016

Marín-Palma D, Castro GA, Cardona-Arias JA, Urcuqui-Inchima S, Hernandez JC. Lower high-density lipoproteins levels during human immunodeficiency virus type 1 infection are associated with increased inflammatory markers and disease progression. Front Immunol. 14 de junio de 2018;9(JUN). doi: 10.3389/fimmu.2018.01350

Thacker SG, Zarzour A, Chen Y, Alcicek MS, Freeman LA, Sviridov DO, et al. High-density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology. 1 de noviembre de 2016;149(3):306-19. doi: 10.1111/imm.12638

Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology [Internet]. septiembre de 2016 [citado 8 de julio de 2019];149(1):13-24. Disponible en: http://doi.wiley.com/10.1111/imm.12617 doi: https://doi.org/10.1111/imm.12617

Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovasc Res [Internet]. 1 de agosto de 2014 [citado 8 de julio de 2019];103(3):372-83. Disponible en: https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvu150 doi: https://doi.org/10.1093/cvr/cvu150

Gupta N, DeFranco AL. Lipid rafts and B cell signaling. Semin Cell Dev Biol [Internet]. octubre de 2007 [citado 8 de julio de 2019];18(5):616-26. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17719248 doi: 10.1016/j.semcdb.2007.07.009 PMID: 17719248

Jury EC, Flores-Borja F, Kabouridis PS. Lipid rafts in T cell signalling and disease. Semin Cell Dev Biol [Internet]. octubre de 2007 [citado 8 de julio de 2019];18(5):608-15. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17890113 doi: 10.1016/j.semcdb.2007.08.002 PMID: 17890113

De Nardo D, Labzin LI, Kono H, Seki R, Schmidt S V, Beyer M, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol [Internet]. 8 de febrero de 2014 [citado 12 de julio de 2019];15(2):152-60. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24317040 doi: 10.1038/ni.2784 PMID: 24317040

Marín-Palma D, Andrea Taborda N, Urcuqui-Inchima S, Carlos Hernandez J, Profesor Asociado B, Carlos Hernández J. Inflamación y respuesta inmune innata: participación de las lipoproteínas de alta densidad. IATREIA. 2017;30(4):423-35. doi: 10.17533/udea.iatreia.v30n4a06

Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, Cheung MC, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 1 de marzo de 2007;117(3):746-56. doi: 10.1172/JCI26206

Koseki M, Hirano K, Masuda D, Ikegami C, Tanaka M, Ota A, et al. Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-α secretion in Abca1-deficient macrophages. J Lipid Res [Internet]. febrero de 2007 [citado 12 de julio de 2019];48(2):299-306. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17079792 doi: 10.1194/jlr.M600428-JLR200 PMID: 17079792

Marín D, Taborda N, Urcuqui S, Hernandez J. Inflamación y respuesta inmune innata: participación de las lipoproteínas de alta densidad. Iatreia [Internet]. 2017;30(4):424-36. Disponible en: http://aprendeenlinea.udea.edu.co/revistas/index.php/iatreia/article/view/325591/20785679 doi: 10.17533/udea.iatreia.v30n4a06

Song GJ, Kim S-M, Park K-H, Kim J, Choi I, Cho K-H. SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochem Biophys Res Commun [Internet]. 30 de enero de 2015 [citado 12 de julio de 2019];457(1):112-8. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25528585 doi: 10.1016/j.bbrc.2014.12.028 PMID: 25528585

Montecucco F, Favari E, Norata GD, Ronda N, Nofer J-R, Vuilleumier N. High density lipoproteins: From biological understanding to clinical exploitation. Handb Exp Pharmacol. 2015;224:455-82.

Ye D, Lammers B, Zhao Y, Meurs I, J.C. Van Berkel T, Van Eck M. ATP-Binding Cassette Transporters A1 and G1, HDL Metabolism, Cholesterol Efflux, and Inflammation: Important Targets for the Treatment of Atherosclerosis. Curr Drug Targets. 18 de abril de 2011;12(5):647-60. doi: 10.2174/138945011795378522 PMID: 21039336

Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. febrero de 2010;30(2):139-43. doi: 10.1161/ATVBAHA.108.179283 PMID: 19797709

Zarubica A, Trompier D, Chimini G. ABCA1, from pathology to membrane function. Pflugers Arch Eur J Physiol [Internet]. 2007;453(5):569-79. Disponible en: https://link.springer.com/article/10.1007/s00424-006-0108-z doi: https://doi.org/10.1007/s00424-006-0108-z

Tarling EJ, Vallim TQ d. A, Edwards PA. Role of ABC transporters in lipid transport and human disease. Vol. 24, Trends in Endocrinology and Metabolism. 2013. p. 342-50. doi: https://doi.org/10.1016/j.tem.2013.01.006

Estrada V, Martínez-Larrad MT, González-Sánchez JL, de Villar NGP, Zabena C, Fernández C, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism. julio de 2006;55(7):940-5. doi: https://doi.org/10.1016/j.metabol.2006.02.024

Anastos K, Lu D, Shi Q, Tien PC, Kaplan RC, Hessol NA, et al.

Association of serum lipid levels with HIV serostatus, specific antiretroviral agents, and treatment regimens. J Acquir Immune Defic Syndr. mayo de 2007;45(1):34-42. doi: 10.1097/QAI.0b013e318042d5fe

Bernal E, Masiá M, Padilla S, Gutiérrez F. High-density lipoprotein cholesterol in HIV-infected patients: Evidence for an association with HIV-1 viral load, antiretroviral therapy status, and regimen composition. AIDS Patient Care STDS. 1 de julio de 2008;22(7):569-75. doi: 10.1089/apc.2007.0186

Zhang N, Lei JY, Lei H, Ruan X, Liu Q, Chen Y, et al. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res. 2015;336(1):33-42. doi: 10.1016/j.yexcr.2015.05.023

Yin K, Liao D fang, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): A possible link between inflammation and reverse cholesterol transport. Mol Med. septiembre de 2010;16(9-10):438-49. doi: 10.2119/molmed.2010.00004

Chen M, Li W, Wang N, Zhu Y, Wang X. ROS and NF-κB but not LXR mediate IL-1β signaling for the downregulation of ATP-binding cassette transporter A1. Am J Physiol - Cell Physiol. abril de 2007;292(4). doi: 10.1152/ajpcell.00016.2006

Alfaro Leon ML, Evans GF, Farmen MW, Zuckerman SH. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ. Biochem Biophys Res Commun. 29 de julio de 2005;333(2):596-602. doi: 10.1016/j.bbrc.2005.05.112

Wang X, Liao D, Bharadwaj U, Li M, Yao Q, Chen C. C-reactive protein inhibits cholesterol efflux from human macrophage-derived foam cells. Arterioscler Thromb Vasc Biol. 1 de marzo de 2008;28(3):519-26. doi: 10.1161/ATVBAHA.107.159467

Reilly MP, McGillicuddy FC, De La Moya ML, Hinkle CC, Joshi MR, Chiquoine EH, et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation. 3 de marzo de 2009;119(8):1135-45.doi: 10.1161/CIRCULATIONAHA.108.810721

Baranova I, Vishnyakova T, Bocharov A, Chen Z, Remaley AT, Stonik J, et al. Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells. Infect Immun. 2002;70(6):2995-3003.doi: 10.1128/IAI.70.6.2995-3003.2002

Morrow MP, Grant A, Mujawar Z, Dubrovsky L, Pushkarsky T, Kiselyeva Y, et al. Stimulation of the liver X receptor pathway inhibits HIV-1 replication via induction of ATP-binding cassette transporter A1. Mol Pharmacol. agosto de 2010;78(2):215-25. doi: 10.1124/mol.110.065029

Jennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, et al. HIV-1 protein NEF inhibits activity of ATP-binding cassette transporter A1 by targeting endoplasmic reticulum chaperone calnexin. J Biol Chem. 17 de octubre de 2014;289(42):28870-84. doi: 10.1074/jbc.M114.583591

Aiello RJ, Brees D, Francone OL. ABCA1-deficient mice: Insights into the role of monocyte lipid efflux in HDl formation and inflammation. Arterioscler Thromb Vasc Biol. 1 de junio de 2003;23(6):972-80. doi: 10.1161/01.ATV.0000054661.21499.FB

Lin S, Nadeau PE, Mergia A. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking. Retrovirology. 15 de julio de 2015;12(1). doi: 10.1186/s12977-015-0188-y

Van Eck M, Singaraja RR, Ye D, Hildebrand RB, James ER, Hayden MR, et al. Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol. abril de 2006;26(4):929-34. doi: 10.1161/01.ATV.0000208364.22732.16

Amberbir A, Banda V, Singano V, Matengeni A, Pfaff C, Ismail Z, et al. Effect of cardio-metabolic risk factors on all-cause mortality among HIV patients on antiretroviral therapy in Malawi: A prospective cohort study. PLoS One. 1 de enero de 2019;14(1). doi: 10.1371/journal.pone.0210629

Tang C, Oram JF. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Vol. 1791, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 2009. p. 563-72. doi: 10.1016/j.bbalip.2009.03.011

Hofmann N, Galetskiy D, Rauch D, Wittmann T, Marquardt A, Griese M, et al. Analysis of the proteolytic processing of ABCA3: Identification of cleavage site and involved proteases. PLoS One. 1 de marzo de 2016;11(3). doi: 10.1371/journal.pone.0152594

Zarbock R, Kaltenborn E, Frixel S, Wittmann T, Liebisch G, Schmitz G, et al. ABCA3 protects alveolar epithelial cells against free cholesterol induced cell death. Biochim Biophys Acta - Mol Cell Biol Lipids. 1 de junio de 2015;1851(7):987-95. doi: 10.1016/j.bbalip.2015.03.004

Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Vol. 18, Respiratory research. 2017. p. 41. doi: 10.1186/s12931-017-0526-9

Beers MF, Mulugeta S. The biology of the ABCA3 lipid transporter in lung health and disease. Vol. 367, Cell and Tissue Research. Springer Verlag; 2017. p. 481-93. doi: 10.1007/s00441-016-2554-z

Chutkow WA, Lee RT. Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability. J Biol Chem [Internet]. 19 de agosto de 2011 [citado 12 de agosto de 2020];286(33):29139-45. Disponible en: /pmc/articles/PMC3190721/?report=abstract doi: 10.1074/jbc.M111.267666

Alhawiti NM, Al Mahri S, Aziz MA, Malik SS, Mohammad S. TXNIP in Metabolic Regulation: Physiological Role and Therapeutic Outlook. Curr Drug Targets [Internet]. 23 de febrero de 2017 [citado 12 de agosto de 2020];18(9):1095. Disponible en: /pmc/articles/PMC5543564/?report=abstract doi: 10.2174/1389450118666170130145514 PMID: 28137209

Long Y, Wang G, Li K, Zhang Z, Zhang P, Zhang J, et al. Oxidative stress and NF-κB signaling are involved in LPS induced pulmonary dysplasia in chick embryos. Cell Cycle [Internet]. 18 de julio de 2018 [citado 11 de agosto de 2020];17(14):1757-71. Disponible en: /pmc/articles/PMC6133310/?report=abstract. doi: 10.1080/15384101.2018.1496743 PMID: 30010471

Verma N, Ahuja V, Paul J. Profiling of ABC transporters during active ulcerative colitis and in vitro effect of inflammatory modulators. Dig Dis Sci [Internet]. 20 de agosto de 2013 [citado 11 de agosto de 2020];58(8):2282-92. Disponible en: http://link.springer.com/10.1007/s10620-013-2636-7 doi: 10.1007/s10620-013-2636-7 PMID: 23512405

Levring TB, Kongsbak-Wismann M, Rode AKO, Al-Jaberi FAH, Lopez D V., Met Ö, et al. Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Sci Rep [Internet]. 1 de diciembre de 2019 [citado 16 de agosto de 2020];9(1). Disponible en: /pmc/articles/PMC6853882/?report=abstract doi: 10.1038/s41598-019-53234-x PMID: 31723203

Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Vol. 13, Nature Reviews Immunology. 2013. p. 397-411. doi: https://doi.org/10.1038/nri3452

Kuti MA, Adesina OA, Awolude OA, Ogunbosi BO, Fayemiwo SA, Akinyemi JO, et al. Dyslipidemia in ART-Naive HIV-Infected Persons in Nigeria - Implications for Care. J Int Assoc Provid AIDS Care. 25 de julio de 2015;14(4):355-9. doi: 10.1177/2325957414555227

Rose H, Woolley I, Hoy J, Dart A, Bryant B, Mijch A, et al. HIV infection and high-density lipoprotein: The effect of the disease vs the effect of treatment. Metabolism. enero de 2006;55(1):90-5. doi: 10.1016/j.metabol.2005.07.012

Riddler SA, Li X, Chu H, Kingsley LA, Dobs A, Evans R, et al. Longitudinal changes in serum lipids among HIV-infected men on highly active antiretroviral therapy. HIV Med. julio de 2007;8(5):280-7. doi: 10.1111/j.1468-1293.2007.00470.x

Zangerle R, Widner B, Quirchmair G, Neurauter G, Sarcletti M, Fuchs D. Effective antiretroviral therapy reduces degradation of tryptophan in patients with HIV-1 infection. Clin Immunol. 2002;104(3):242-7. doi: 10.1006/clim.2002.5231

Publicado
2021-05-23
Cómo citar
1.
Arias Perez RD, Arboleda-Álvarez N, Sánchez-Gómez C, Florez-Alvarez L, Marín-Palma D, Taborda NA, Hernandez JC. Alteración en la expresión de proteínas transportadoras de colesterol y moléculas inmunomoduladoras en pacientes con VIH-1. Kasmera [Internet]. 23 de mayo de 2021 [citado 21 de junio de 2021];49(1):e49133736. Disponible en: https://produccioncientificaluz.org/index.php/kasmera/article/view/33736
Sección
Artículos Originales