Microbiota intestinal, fibrosis quística y eje intestino pulmón intestinal
Intestinal microbiota, cystic fibrosis and intestinal-lung axis
Abstract
Cystic fibrosis (CF) is a hereditary, autosomal recessive disease with multisystem involvement, caused by mutations in the gene that encodes the Cystic Fibrosis Transmembrane Conductance Regulatory Protein (CFTR) located on chromosome 7. It is a hereditary disease. More common in Caucasians, these mutations cause dysfunction or absence of CFTR, triggering abnormalities in chloride secretion, sodium reabsorption and water transport, affecting multiple organs and systems, given the expression of this protein in all epithelial cells. Inflammation in Cystic Fibrosis is defined as chronic and low grade, in which immune system cells participate, generating proinflammatory cytokines, it also increases the production of reactive oxygen species that generate greater oxidative stress and contributes to maintaining intestinal inflammation and systemic. The intestinal microbiota may have a bidirectional link and a significant clinical association with health or disease, intestinal dysbiosis has been reported since the sixth week of life, is related to the alteration of CFTR and inflammation, is characterized by a decrease in relative bacterial abundance and diversity is associated with a decrease in lung function through the intestine-lung axis, an intestinal decrease in Bacteroides and Bifidubacterium and an increase in Staphylococcus, Enterobacteriaceae and Veillonella have been reported, the interconnection between the gastrointestinal system and the Respiratory disease is evidenced by the presence of bacterial genera such as Enterococcus and Escherichia coli that initially colonize the intestine and then the lung.
Downloads
References
Stand I, Páez D, Vega M. Fibrosis quística, Sociedad Colombiana de Pediatría 2023. Precop SCP. 22(2)
Farinha C, Callebaut I. Molecular mechanisms of cystic fibrosis-How mutations lead to misfunction and guide therapy. Biosci. Rep. 2022;42.
Turcios N. Cystic Fibrosis Lung Disease: An Overview. Respir Care 2020; 65:233–251.
Jia Sh, Taylor-Cousar J. Cystic Fibrosis Modulator Therapies. Annu Rev Med 2023;74:413-426.
Havamani A, Salem I, Sferra T, Sankararaman S. Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites 2021; 11:123.
Imhann F, Bonder M, Vich V, Fu J, Mujagic Z, Vork L, Tigchelaar E, Jankipersadsing S, Cenit M, Harmsen H. Proton pump inhibitors affect the gut. Gut 2016;65:740-748.
Melo J, Fernández P. Fibrosis quística en el adulto. Revista Médica las Condes 2015;26(3):276- 284.
Guerra M, Rabasco A, González M. Fibrosis quística: tratamiento actual y avances con la nanotecnología. Ars Pharm 2020.61(2)
Averna M, Melotti P, Sorio C. Revisiting the Role of Leukocytes in Cystic Fibrosis. Cells 2021;10(12):3380.
Fonseca O, Salomé M, Cordeiro A. Cystic Fibrosis Bone Disease: The Interplay between CFTR Dysfunction and Chronic Inflammation. Biomolecules 2023; 13(3): 425.
Moliteo E, Sciacca M, Palmeri A, Papale M, Manti S, Parisi G, Leonardi S. Cystic Fibrosis and Oxidative Stress: The Role of CFTR. Molecules 2022;27(16):5324.
Turcios N. Cystic Fibrosis Lung Disease: An Overview. Respiratory Care February 2020;65(2):233-251
Caverly L, Riquelme M, Hisert K. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation Clin Chest Med 2022;43(4):647–665.
Philip M. Polgreen ,Alejandro P. Comellas. Clinical Phenotypes of Cystic Fibrosis Carriers. Annu Rev Med 2022;73:563–574.
Farinha C, Callebaut I. Molecular mechanisms of cystic fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022;42(7).
Zhao L, Luo JL, Ali MK, Spieker koetter E, Nicolls MR. The Human Respiratory Microbiome: Current Understandings and Future Directions. J Respir Cell Mol Biol 2023;68(3):245-255.
Zhang D, Li S, Wang N, Tan H-Y, Zhang Z, Feng Y. The cross-talk between gut microbiota and lungs in common lung diseases. Front Microbiol 2020;11:301.
Liou T.G. The Clinical Biology of Cystic Fibrosis Transmembrane Regulator Protein: Its Role and Function in Extrapulmonary Disease. Chest 2019;155:605–616.
Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci 2020;21:2891.
Turcios N. Cystic Fibrosis Lung Disease: An Overview. Respir Care 2020;65(2):233-251.
Testa I, Crescenzi O, Esposito S. Microorganisms. Gut Dysbiosis in Children with Cystic Fibrosis: Development, Features and the Role of Gut-Lung Axis on Disease Progression 2022;11(1):9.
Hanssens L, Duchateau J, Casimir G. 2021. CFTR Protein: Not Just a Chloride Channel? Cells 2021;10(11):2844.
Mulcahy E, Hudson J, Beggs S, Reid D, Roddam L, Cooley M. High peripheral blood th17 percent associated with poor lung function in cystic fibrosis. ONE 2015;10: e0120912.
Mulcahy E, Cooley M, McGuire H, Asad S, Fazekas B, Beggs S, Roddam L. Widespread alterations in the peripheral blood innate immune cell profile in cystic fibrosis reflect lung pathology. Immunol. Cell Biol 2019;97:416–426.
Esposito S, Testa I, Mariotti E, Cunico D, Torelli L, Grandinetti R, Fainardi V, Pisi G, Principi N. Probiotics Administration in Cystic Fibrosis: What Is the Evidence? Nutrients 2022. 30;14(15):3160.
Saeedeh T, Andrew S, Majid K, Golnaz R, Mitra Z, Mahammad S. Fecal Calprotectin and Phenotype Severity in Patients with Cystic Fibrosis: A Systematic Review and Meta-Analysis. Pediatr Gastroenterol Hepatol Nutr. 2022;25(1):1-12.
Barrack K, Hampton T, Valls R, Surve S, Gardner T, Sanville J. An In Vitro Medium for Modeling Gut Dysbiosis Associated with Cystic Fibrosis. bioRxiv. 2023.
Hadeel A, Iman B, Ahmed A, Hanaa B. Correlation of Gut Microbiota, Vitamin D Status, and Pulmonary Function Tests in Children with Cystic Fibrosis. Front Nutr 2022;9: 884104.
Aggeletopoulou L, Tsounis E, Mouzaki A, Triantos C. Exploring the Role of Vitamin D and the Vitamin D Receptor in the Composition of the Gut Microbiota. Front Biosci 2023;28(6):116-
Li Chunxi, Liu Haiyue, Lin Yanxia, Pan Jianbing, Su Jin . The Gut Microbiota and Respiratory Diseases: New Evidence J Immunol Res. 2020;2340670.
Thavamani A, Salem I, Sferra T, Sankararaman S. Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites 2021;11(2):123.
Castañeda C. Microbiota pulmonar y el eje intestino-pulmón. Rev Cubana Pediatr 2022;93(4).
Antosca K, Chernikova D, Courtney E, Kathryn L, Kewei L. Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a Reduction in Genera Associated with Immune Programming from Birth. J Bacteriol. 2019;201(16): e00274-19.
Yawei D, Lanlan H, Zhongbo Z, Fan Y, Quan M, Yanmei Z, Xuhui Z, Xiping L. The mechanism of gut-lung axis in pulmonary fibrosis Front Cell Infect Microbiol 2024;14: 1258246
Testa LL, Esposito S. Gut Dysbiosis in Children with Cystic Fibrosis: Development, Features and the Role of Gut-Lung Axis on Disease Progression. Microorganisms 2022;11(1): 9.doi: 10.3390
Burke D, Fouhy F, Harrison M, Rea M, Cotter P, O’Sullivan O. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol 2017; 17:1–11.
Lussac F, Charpentier E, Imbert S, Lefranc M, Bui S. The gut-lung axis in the CFTR modulator era Front Cell Infect Microbiol. 2023;13: 1271117.
Madan J, Koestler D, Stanton B, Davidson L, Moulton L, Housman M, Moore J, Guill M, Morrison M, Sogin M. Serial Analysis of the Gut and Respiratory Microbiome in Cystic Fibrosis in Infancy: Interaction between Intestinal and Respiratory Tracts and Impact of Nutritional Exposures. mBio 2012; 3(4): e00251-12
Françoise A, Héry-Arnaud G. The Microbiome in Cystic Fibrosis Pulmonary Disease. Genes 2020;11(5):5362020.
Price C, O'Toole G. The Gut-Lung Axis in Cystic Fibrosis. J Bacteriol. 2021;203(20): e0031121.
Burke D, Fouhy F, Harrison M, Rea M, Cotter P, O’Sullivan O. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol 2017;17:1–11.
Ashique S, De Rubis G, Sirohi E, Mishra N.. Short Chain Fatty Acids: Fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem Biol Interact 2022;368:110231.