Disbiosis intestinal y enfermedad inflamatoria intestinal
Intestinal dysbiosis and inflammatory bowel disease
Abstract
Intestinal dysbiosis is an imbalance at the level of the intestinal microbiota, which constitutes a reduction in the absorption capacity of nutrients and through this induces vitamin deficiency. Microbiota dysbiosis usually induces the formation of specific cells against the intestinal microbiota, by the release of MAMPS, which leads to the secretion of pro-inflammatory interleukin. Inflammatory bowel disease is defined as a group of disorders that induce inflammation of the small and large intestines, causing components of the gastro-intestinal system to be attacked by the individual's immune system. The symptoms are: abdominal pain, diarrhea, vomiting, bloody stools. They comprise two groups of Crohn's diseases and idiopathic ulcerative rectocolitis. Crohn's can affect any part of the gastrointestinal tract and ulcerative colitis is characterized by inflammation in the large intestine. Among the risk factors are smoking, race, family history and NSAIDs. Higher incidence in Europe, Americans, blacks and Latinos. Lower incidences in central and southern regions of Europe, Asia and Africa. In munophysiopathology, the role of NLPH3 and regulation of NLRPH3 and the role of citokines in their th1 or th2 profiles intervene, with the release of proinflammatory citokines and the role of ROS, which are proteins that make up oxygen and have bactericidal effects on function. intestinal. Due to the lack of information on the factors that can influence between dysbiosis and IBD, more studies are important to clarify this interaction that compromises the gastrointestinal system and its consequences, which endanger the patient's life.
Downloads
References
Bastida G, Garrido A, Valero E, del Pozo P. Enfermedad de Crohn. Medicine - Programa de Formación Médica Continuada Acreditado. 2020; 13 (11): 603-602.
Ballester MP, Boscá- Watts MM, Mínguez M. Crohn’s Disease. Medicina Clínica Práctica. 2018; 151 (1): 26-33.
Aguirre D, Archila PE, Carrera J, Castaño R, Escobar CM, García DR, Consenso Colombiano de Enfermedad Inflamatoria Intestinal. Rev Col Gastroenterol. 2012; 27(1): 1-44.
Chia-Hui L. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. Journal of Biomedical Science. 2018; 25(78). 1-14.
Ilhan N. Gut microbiota and metabolism. International Journal of medical biochemistry. 2018;1(3):115-28.
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition. 2018; 57(2).
Visconti A, Le Roy CI, Rosa, Rossi N, Martin TC, Mohney RP, Li W, Rinaldis ED, Bell JT , Venter C, Nelson KE, Spector TD, Falchi M. Interplay between the human gut microbiome and host metabolism. Nature communications. 2019; 10 (4505).
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microbiota Ecology in Health and Disease. 2015; 25.
Brüssow H. Problems with the concept of gut microbiota dysbiosis. Microbial Biotechnology. 2019; 13 (2). 423–434.
Padrón CA. Human gut microbiota and diet. Food Sciences. 2019; 12(1). 31-42.
Liu S, Wenjing Z, Lan P, Xiangyu M. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell. 2020.
Proctor LM, Huot H, Fettwels J, Lloyd J. The Integrative Human Microbiome Project. Perspective. 2019; 569 (7758):641-648.
Lavel A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature reviews Gastroenterology and Hepatology. 2020; 17, 223–237. DOI:10.1038/s41575-019-0258-z
Seishima J, Iida N,Kitamura K, Yutani M ,Wang Z,Seki A, Yamashita T, Sakai Y, Honda M, Yamashita T, Kagaya T ,Shirota Y, Fujinaga Y, Mizukoshi E, Kaneko S. Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biology. 2019; 20(252).
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clinical Journal Gastroenterology. 2018; 11(1):1-10.
Qiao YQ, Wen C, Hua Ran Z. Therapeutic modulation of gut microbiota in inflammatory bowel disease: More questions to be answered. Digestive Diseases and Sciences. 2016;17(12):800-810.
Knox NC, Forbes JD, Van Domselaar GV, Bernstein CN. The Gut Microbiome as a Target for IBD Treatment: Are We There Yet?. Curr Treat Options Gastroenterology. 2019;17(1):115-126.
Syal G, Kashami A, Shih DQ. Fecal Microbiota Transplantation in Inflammatory Bowel Disease: A Primer for Internists. The American Journal of Medicine. 2018.
Arrieta MC, Stiemsma L, Amenyogbe N, Brown EM, Finlay B. The Intestinal Microbiome in early life: Health and Disease. Frontiers in Immunology. 2014; 5(427): 1-18. DOI: 10.3389/fimmu.2014.00427
Bull M, Plummer NT. Part 1: The Human Gut Microbiome in Health and Disease. Integrative Medicine: A Clinician’s Journal. 2014; 13(6): 7-22.
Guarner F, Malagelada JR. Gut flora in health and disease. The Lancet. 2003; 360. 512-519. Mutic AD, Jordan S, Edwards SM, Ferratini EP, Thul TA, Yan I. The postpartum Maternal and Newborn Microbiomes. MCNA J Matern Child Nurs.2017; 42(6): 326–331.
Cani P. Human gut microbiome: hopes, threats and promises. Recent advances in basic science. 2020; 67(9): 1716-1725.
Kovatcheva-Datchary P, Tremaroli V, Backhed F. The Gut Microbiota. The Prokaryotes, 2013. 3- 24.
Glassen KL, Abraham BP. The microbiome and inflammatory bowel disease. The journal of allergy and clinical immunology. 2020; 145(1): 16-27. DOI: 10.1016/j.jaci.2019.11.003
Lavel A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature reviews gastroenterology and hepatology. 2020. 17: 223-237.
Annese Vito, Rogai F, Settesoldi A, Bagnoli S. PPARγ in Inflammatory Bowel Disease. PPAR Research. 2012.
Chavéz ME. Gut microbiota in health and disease. Revista gastroenterología de México. 2013; 78(4) : 240-248.
Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic Approaches for Defining the Pathogenesis of Inflammatory Bowel Diseases. Cell Host Microbe. 2010; 3(6): 417–427.
Pascal V, Pozuelo M, Borruel N, Casellas F, Campos. Una firma microbiana de la enfermedad de Crohn. 2017; 66 : 813-822
Henke MT, Kenny DJ, Cassilly, Vlamkis H, Xavier RJ, Clardy J. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proceeding of the National Academy of Sciences of the United States of America. 2019; 116 (26): 12672–12677.
Brantley A, Yassour M, Sauk J, Garner A, Juan X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome medicine. 2017; 9(103).
Levy M, Thaiss CA, Zeevi D, Armit I, Segal E, Elinav E. Microbiota- Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. CELL. 2015; 163 (6): 1428-1443.