Evaluación histopatológica de los efectos de una dieta alta en fructosa sobre la curación ósea en defectos tibiales: un estudio experimental
Resumen
El objetivo de este estudio fue investigar el efecto de la alimentación con dieta alta en fructosa sobre la regeneración ósea en defectos creados en tibias de ratas. El experimento se realizó con 24 ratas Sprague-Dawley hembras en el mismo período de celo; las ratas se dividieron en dos grupos: grupo control y grupo experimental. En el grupo control con defecto (n=12), se creó quirúrgicamente un defecto cilíndrico de 4 mm de diámetro y 4 mm de profundidad en el hueso corticoesponjoso de la parte metafisaria de la tibia derecha de cada rata. No se realizó ninguna otra aplicación en este grupo durante el experimento. Para cada rata del grupo con defecto alimentado con alta fructosa (n=12), se crearon quirúrgicamente defectos cilíndricos de 4 mm de diámetro y 4 mm de profundidad en el hueso corticoesponjoso de la parte metafisaria de la tibia derecha. Los suplementos de fructosa de los grupos se agregaron al agua potable a una tasa del 20% (p/v). Todas las ratas fueron sacrificadas al final de la semana 12 de la aplicación quirúrgica. Las muestras histológicas fueron evaluadas bajo un microscopio óptico. No hubo diferencias significativas en el caso de la regeneración ósea entre los grupos control y dieta alta en fructosa 52,2 ± 9 % para animales en la dieta control, versus 49,8 ± 7,67 % para HFD. (P>0,05). Se requieren más investigaciones para identificar los mecanismos responsables de estas alteraciones en la estructura ósea y determinar si los cambios afectan en última instancia la calidad y la resistencia ósea con la edad.
Descargas
Citas
Nakagawa T, Tuttle KR, Short RA, Johnson RJ. Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat. Rev. Nephrol. [Internet]. 2005; 1(2):80-86. doi: https://doi.org/cdhkws DOI: https://doi.org/10.1038/ncpneph0019
Geidl-Flueck B, Gerber PA. Fructose drives de novo lipogenesis affecting metabolic health. J. Endocrinol. [Internet]. 2023; 257(2):e220270. doi: https://doi.org/pmpq DOI: https://doi.org/10.1530/JOE-22-0270
Geidl-Flueck B, Hochuli M, Németh Á, Eberl A, Derron N, Köfeler HC, Tappy L, Berneis K, Spinas GA, Gerber PA. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J. Hepatol. [Internet]. 2021; 75(1):46-54. doi: https://doi.org/gr2jrd DOI: https://doi.org/10.1016/j.jhep.2021.02.027
Jeppesen J, Chen YI, Zhou MY, Schaaf P, Coulston A, Reaven GM. Postprandial triglyceride and retinyl ester responses to oral fat: effects of fructose. Am. J. Clin. Nutr. [Internet]. 1995; 61(4):787-791. doi: https://doi.org/pmpr DOI: https://doi.org/10.1093/ajcn/61.4.787
Abraha A, Humphreys SM, Clark ML, Matthews DR, Frayn KN. Acute effect of fructose on postprandial lipaemia in diabetic and non-diabetic subjects. Br. J. Nutr. [Internet]. 1998; 80(2):169-175. doi: https://doi.org/pmps DOI: https://doi.org/10.1017/S000711459800107X
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. The propensity of fructose to induce metabolic dysfunction is dependent on the baseline diet, length of the dietary exposure, and sex of the mice. BioRxiv [Preprint]. [Internet]. 2024[ Nov 26, 2024]; 625441. doi: https://doi.org/pmpt DOI: https://doi.org/10.1101/2024.11.26.625441
Nkosi A, Pather R, Mshengu B, Khathi A, Ngubane P. Establishing a Female Animal Model of Prediabetes Using a High-Carbohydrate, High-Fat Diet. Curr. Issues. Mol. Biol. [Internet]. 2024; 46(11):12397-12416. doi: https://doi.org/pmpv DOI: https://doi.org/10.3390/cimb46110736
Hara H, Takayanagi K, Shimizu T, Iwashita T, Ikari A, Maeshima A, Hasegawa H. Possible involvement of up- regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension. Hypertens. Res. [Internet]. 2025; 48:1068–1079. doi: https://doi.org/pmpw DOI: https://doi.org/10.1038/s41440-024-01915-0
Gunawan S, Soetikno V, Purwaningsih EH, Ferdinal F, Wuyung PE, Ramadhani D. 6-Gingerol, a Bioactive Compound of Zingiber officinale, Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats. J. Exp. Pharmacol. [Internet]. 2024; 16:455-466. doi: https://doi.org/pmpx DOI: https://doi.org/10.2147/JEP.S492971
Baharuddin B. The Impact of Fructose Consumption on Human Health: Effects on Obesity, Hyperglycemia, Diabetes, Uric Acid, and Oxidative Stress With a Focus on the Liver. Cureus. [Internet]. 2024; 16(9):e70095. doi: https://doi.org/pmpz DOI: https://doi.org/10.7759/cureus.70095
Tero-Vescan A, Ștefănescu R, Istrate TI, Pușcaș A. Fructose-induced hyperuricaemia - protection factor or oxidative stress promoter?. Nat. Prod. Res. [Internet]. 2025; 39(4):948-960. doi: https://doi.org/pmp2 DOI: https://doi.org/10.1080/14786419.2024.2327624
King S, Baptiston Tanaka C, Ross D, Kruzic JJ, Levinger I, Klineberg I, Brennan-Speranza TC. A diet high in fat and fructose adversely affects osseointegration of titanium implants in rats. Clin. Exp. Dent. Res. [Internet]. 2020; 6(1):107-116. doi: https://doi.org/pmp3 DOI: https://doi.org/10.1002/cre2.255
Ekici O, Aslan E, Guzel H, Korkmaz OA, Sadi G, Gurol AM, Boyaci MG, Pektas MB. Kefir alters craniomandibular bone development in rats fed excess dose of high fructose corn syrup. J. Bone Miner. Metab. [Internet]. 2022; 40(1):56-65. doi: https://doi.org/pmp4 DOI: https://doi.org/10.1007/s00774-021-01273-8
Stricker S, Rudloff S, Geier A, Steveling A, Roeb E, Zimmer KP. Fructose Consumption-Free Sugars and Their Health Effects. Dtsch Arztebl Int. [Internet]. 2021; 118(5):71-78. doi: https://doi.org/pmp5 DOI: https://doi.org/10.3238/arztebl.m2021.0010
Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. [Internet]. 2016; 53(1):52-67. doi: https://doi.org/gh6ts4 DOI: https://doi.org/10.3109/10408363.2015.1084990
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. [Internet]. 1998; 78(3):783-809. doi: https://doi.org/gfs3s9
Bhat SF, Pinney SE, Kennedy KM, McCourt CR, Mundy MA, Surette MG, Sloboda DM, Simmons RA. Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sex-specific manner. J. Physiol. [Internet]. 2021; 599(5):1487-1511. doi: https://doi.org/grr8tr DOI: https://doi.org/10.1113/JP280034
Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J. Bone Miner. Res. [Internet]. 2018; 33(6):1154-1165. doi: https://doi.org/ghbxdr DOI: https://doi.org/10.1002/jbmr.3408
Lac G, Cavalie H, Ebal E, Michaux O. Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis. [Internet]. 2008; 7:16. doi: https://doi.org/bs7z27 DOI: https://doi.org/10.1186/1476-511X-7-16
Li W, Xu P, Wang C, Ha X, Gu Y, Wang Y, Zhang J, Xie J. The effects of fat-induced obesity on bone metabolism in rats. Obes. Res. Clin. Pract. [Internet]. 2017; 11(4):454-463. doi: https://doi.org/pmp6 DOI: https://doi.org/10.1016/j.orcp.2016.12.001
Macri EV, Gonzales Chaves MM, Rodriguez PN, Mandalunis P, Zeni S, Lifshitz F, Friedman SM. High-fat diets affect energy and bone metabolism in growing rats. Eur. J. Nutr. [Internet]. 2012; 51(4):399-406. doi: https://doi.org/cpjnxz DOI: https://doi.org/10.1007/s00394-011-0223-2
Yarrow JF, Toklu HZ, Balaez A, Phillips EG, Otzel DM, Chen C, Wronski TJ, Aguirre JI, Sakarya Y, Tümer N, Scarpace PJ. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats. Bone. [Internet]. 2016; 85:99-106. doi: https://doi.org/pmp7 DOI: https://doi.org/10.1016/j.bone.2016.02.004
Felice JI, Gangoiti MV, Molinuevo MS, McCarthy AD, Cortizo AM. Effects of a metabolic syndrome induced by a fructose-rich diet on bone metabolism in rats. Metabolism. [Internet]. 2014; 63(2):296-305. doi: https://doi.org/f5qvgz DOI: https://doi.org/10.1016/j.metabol.2013.11.002
Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One. [Internet]. 2018; 13(2):e0192416. doi: https://doi.org/gczjmj DOI: https://doi.org/10.1371/journal.pone.0192416
Coelho PG, Pippenger B, Tovar N, Koopmans SJ, Plana NM, Graves DT, Engebretson S, van Beusekom HMM, Oliveira PGFP, Dard M. Effect of Obesity or Metabolic Syndrome and Diabetes on Osseointegration of Dental Implants in a Miniature Swine Model: A Pilot Study. J. Oral Maxillofac. Surg. [Internet]. 2018; 76(8):1677-1687. doi: https://doi.org/gdx3vx DOI: https://doi.org/10.1016/j.joms.2018.02.021
Keuroghlian A, Barroso AD, Kirikian G, Bezouglaia O, Tintut Y, Tetradis S, Moy P, Pirih F, Aghaloo T. The effects of hyperlipidemia on implant osseointegration in the mouse femur. J. Oral Implantol. [Internet]. 2015; 41(2):e7-e11. doi: https://doi.org/f682dm DOI: https://doi.org/10.1563/AAID-JOI-D-13-00105
Durmaz B, Gunes N, Koparal M, Gul M, Dundar S, Bingul MB. Investigation of the effects of quercetin and xenograft on the healing of bone defects: An experimental study. J. Oral Biol. Craniofac. Res. [Internet]. 2023; 13(1):22-27. doi: https://doi.org/pmp9 DOI: https://doi.org/10.1016/j.jobcr.2022.10.008
Istek O, Tanrisever M, Eroksuz H, Karabulut B, Ozcan EC, Bingul MB, Guler R, Dundar S: The histopathological evaluation of effects of application of the bovine amniotic fluid with graft on peri-ımplant bone regeneration. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2023; 29(5):551-556. doi: https://doi.org/m854 DOI: https://doi.org/10.9775/kvfd.2023.30031
Tladi R, Erlwanger KH, Donaldson J. Effect of quercetin administration during the first two weeks post-weaning on the development of non-alcoholic fatty liver disease and dyslipidaemia in Sprague Dawley rats fed a high fructose diet. Gen. Physiol. Biophys. [Internet]. 2024; 43(1):25-36. doi: https://doi.org/pmqb DOI: https://doi.org/10.4149/gpb_2023033
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. [Internet]. 1998; 78(3):783-809. doi: https://doi.org/gfs3s9 DOI: https://doi.org/10.1152/physrev.1998.78.3.783
Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long- term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone. [Internet]. 1995; 16(1):25-31. doi: https://doi.org/ddh5zv DOI: https://doi.org/10.1016/8756-3282(95)80007-D
Lorincz C, Reimer RA, Boyd SK, Zernicke RF. High- fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br. J. Nutr. [Internet]. 2010; 103(9):1302-1308. doi: https://doi.org/drzrvx DOI: https://doi.org/10.1017/S0007114509993084
Douard V, Sabbagh Y, Lee J, Patel C, Kemp FW, Bogden JD, Lin S, Ferraris RP. Excessive fructose intake causes 1,25-(OH)(2)D(3)-dependent inhibition of intestinal and renal calcium transport in growing rats. Am. J. Physiol. Endocrinol. Metab. [Internet]. 2013; 304(12):E1303- 1313. doi: https://doi.org/f5ndqn DOI: https://doi.org/10.1152/ajpendo.00582.2012
Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague- Dawley rats on bone mass and strength. Bone. [Internet]. 2008; 42(5):960-968. doi: https://doi.org/cqrf6g DOI: https://doi.org/10.1016/j.bone.2008.01.020
Tjäderhane L, Larmas M. A high sucrose diet decreases the mechanical strength of bones in growing rats. J. Nutr. [Internet]. 1998; 128(10):1807-1810. doi: https://doi.org/gf5c86 DOI: https://doi.org/10.1093/jn/128.10.1807
Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, Haro-Mora JJ, Villanueva-Peñacarrillo ML. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif. Tissue Int. [Internet]. 2009; 84(6):453-461. doi: https://doi.org/fk3jp6 DOI: https://doi.org/10.1007/s00223-009-9220-3
Bergstra AE, Lemmens AG, Beynen AC. Dietary fructose vs. glucose stimulates nephrocalcinogenesis in female rats. J. Nutr. [Internet]. 1993; 123(7):1320-1327. doi: https://doi.org/gf5dk4 DOI: https://doi.org/10.1093/jn/123.7.1320
Koh ET, Reiser S, Fields M. Dietary fructose as compared to glucose and starch increases the calcium content of kidney of magnesium-deficient rats. J Nutr. [Internet]. 1989; 119(8):1173-1178. doi: https://doi.org/pmqc DOI: https://doi.org/10.1093/jn/119.8.1173
Bass EF, Baile CA, Lewis RD, Giraudo SQ. Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr. Res. [Internet]. 2013; 33(12):1063-1071. doi: https://doi.org/f5kj5x DOI: https://doi.org/10.1016/j.nutres.2013.08.006
Khan J, Sadie-Van Gijsen H, Kotzé-Hörstmann LM, Kotze SH, Layman-Lemphane JI. Characterisation of the influence of dietary fat and sugar on bone health utilising densitometry, micro-computed tomography and histomorphometry. Bone. 2025; 192:117380. doi: https://doi.org/pmqd DOI: https://doi.org/10.1016/j.bone.2024.117380