Efectos del clorpirifos en el mejillón de agua dulce Unio elongatulus eucirrus (Bourguignat, 1860), con especial atención a la neurotoxicidad y las respuestas al estrés oxidativo

Palabras clave: Clorpirifos, mejillón de agua dulce, Unio elongatulus eucirrus, estrés oxidativo, antioxidantes

Resumen

Este estudio se propuso investigar los efectos del insecticida organofosforado clorpirifos (CPF) sobre ciertos parámetros bioquímicos del mejillón de agua dulce Unio elongatulus eucirrus. Los mejillones estuvieron expuestos a concentraciones variables de CPF (10, 20 y 40 µg·L-1) durante 96 horas. Se recogieron muestras de los mejillónes a las 24 y 96 horas del experimento. Los resultados indicaron que la exposición a concentraciones de CPF provocó una disminución de las actividades de la acetilcolinesterasa (AChE), la superóxido dismutasa (SOD), la catalasa (CAT) y la glutatión peroxidasa (GPx) y niveles de glutatión reducido (GSH) un aumento en los niveles de malondialdehído (MDA) y en mejillones. En conclusión,el presente estudio demuestra que el CPF provocó la inhibición de la AChE, la formación de estrés oxidativo y efectos negativos sobre ciertos parámetros antioxidantes en el mejillón de agua dulce U. elongatulus eucirrus.

Descargas

La descarga de datos todavía no está disponible.

Citas

Hanna NS, Shekha YA. Acute toxicity of chlorpyrifos on the freshwater bivalves (Unio Tigridis) and effects on bioindicators. Baghdad Sci. J. [Internet]. 2024; 21(1):53–61. doi: https://doi.org/pgvc DOI: https://doi.org/10.21123/bsj.2023.7951

Mishra A, Singh A. Chlorpyrifos effect on vitellogenin, ovarian steroid in adult and nr5a1 expression in fry of the freshwater catfish, Heteropneustes fossilis (Bloch, 1794). Asian J. Biol. Life Sci. [Internet]. 2021; 10(1): 67–75. doi: https://doi.org/gkc5kg DOI: https://doi.org/10.5530/ajbls.2021.10.11

Liu S, Lu J, Li Z. Water quality criteria derivation and ecological risk assessment for organophosphorus pesticides. Chemosphere [Internet]. 2024; 348:140726. doi: https://doi.org/gwnxjw DOI: https://doi.org/10.1016/j.chemosphere.2023.140726

Gonçalves AM, Rocha CP, Marques JC, Gonçalves FJ. Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure–A review. Ecol. Indic. [Internet]. 2021; 122:107303. doi: https://doi.org/gzh43x DOI: https://doi.org/10.1016/j.ecolind.2020.107303

Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol. Environ. Saf. [Internet]. 2020; 200:110731. doi: https://doi.org/gksnkh DOI: https://doi.org/10.1016/j.ecoenv.2020.110731

Li X, Bai Y, Bi Y, Wu Q, Xu S. Baicalin suppressed necroptosis and inflammation against chlorpyrifos toxicity; involving in ER stress and oxidative stress in carp gills. Fish Shellfish Immunol. [Internet]. 2023; 139:108883. doi: https://doi.org/pgvd DOI: https://doi.org/10.1016/j.fsi.2023.108883

Fernández B, Campillo JA, Chaves–Pozo E, Bellas J, León VM, Albentosa M. Comparative role of microplastics and microalgae as vectors for chlorpyrifos bioacumulation and related physiological and immune effects in mussels. Sci. Total Environ. [Internet]. 2022; 807(Part 3):150983. doi: https://doi.org/gp96s3 DOI: https://doi.org/10.1016/j.scitotenv.2021.150983

Perić L, Burić P. The effect of copper and chlorpyrifos co– exposure on biomarkers in the marine mussel Mytilus galloprovincialis. Chemosphere [Internet]. 2019; 225:126–134. doi: https://doi.org/gvtmr3 DOI: https://doi.org/10.1016/j.chemosphere.2019.03.003

Pala A. The effect of a glyphosate–based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean). Environ. Sci. Pollut. Res. [Internet]. 2019; 26(36):36869–36877. doi: https://doi.org/gwdtwc DOI: https://doi.org/10.1007/s11356-019-06804-5

Yonar ME. Chlorpyrifos–induced biochemical changes in Cyprinus carpio: Ameliorative effect of curcumin. Ecotoxicol. Environ. Saf. [Internet]. 2018; 151:49–54. doi: https://doi.org/gc8rkw DOI: https://doi.org/10.1016/j.ecoenv.2017.12.065

Pala A, Serdar O, Mişe–Yonar S, Yonar ME. Ameliorative effect of Fennel (Foeniculum vulgare) essential oil on chlorpyrifos toxicity in Cyprinus carpio. Environ. Sci. Pollut. Res. [Internet]. 2021; 28:890–897. doi: https://doi.org/pgvf DOI: https://doi.org/10.1007/s11356-020-10542-4

Mişe–Yonar S, Yonar ME, Ural MŞ, Pala A. Effect of chlorpyrifos on some biochemical changes in Cyprinus carpio: the protective effect of ellagic acid. Drug Chem. Toxicol. [Internet]. 2022; 45(6):2860–2865. doi: https://doi.org/pgvg DOI: https://doi.org/10.1080/01480545.2021.2011311

Salerno J, Gillis PL, Khan H, Burton E, Deeth LE, Bennett CJ, Sibley PK, Prosser RS. Sensitivity of larval and juvenile freshwater mussels (Unionidae) to ammonia, chloride, copper, potassium, and selected binary chemical mixtures. Environ. Pollut. [Internet]. 2020; 256:113398. doi: https://doi.org/gwg24w DOI: https://doi.org/10.1016/j.envpol.2019.113398

Said RM, Nassar SE. Mortality, energy reserves, and oxidative stress responses of three native freshwater mussels to temperature as an indicator of potential impacts of climate change: A laboratory experimental approach. J. Therm. Biol. [Internet]. 2022; 104: 103154. doi: https://doi.org/pgvj DOI: https://doi.org/10.1016/j.jtherbio.2021.103154

Şahin AG, Karatepe M. Vitamins A, E, C, β–carotene contents and MDA level of freshwater mussel, (Unio elongatulus eucirrus Bourguignat 1860) in the Karakaya Dam Lake Ege. J. Fish. Aquat. Sci. [Internet]. 2022; 39(2):120–124. doi: https://doi.org/pgvk DOI: https://doi.org/10.12714/egejfas.39.2.05

Sangsawang A, Kovitvadhi U, Clearwater S J, Kovitvadhi S, Satapornvanit K, Thompson K. Acute toxicity of chlorpyrifos and carbosulfan to glochidia of the freshwater mussel Hyriopsis bialata Simpson, 1900. Environ. Sci. Pollut. Res. [Internet]. 2017; 24:21361–21374. doi: https://doi.org/gbxrgm DOI: https://doi.org/10.1007/s11356-017-9759-x

Yancheva V, Mollov I, Georgieva E, Stoyanova S, Tsvetanova V, Velcheva I. Ex situ effects of chlorpyrifos on the lysosomal membrane stability and respiration rate in Zebra mussel Dreissena polymorpha (Pallas, 1771). Acta Zool. Bulg. [Internet]. 2017 [cited 26 Nov 2024]; Suppl. 8:85–90. Available in: https://goo.su/eVIRH

Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. [Internet]. 1961; 7(2):88–95. doi: https://doi.org/fwdkkz DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Lowry OH, Rosebrough N J, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. [Internet]. 1951[cited 26 Nov 2024]; 193(1):265–275. Available in: https://goo.su/nyVwa DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Das S, Jana BB. Oxygen uptake and filtration rate as animal health biomarker in Lamellidens marginalis (Lamarck). Indian J. Exp. Biol. [Internet]. 2003 [cited 22 Oct. 2024]; 41:1306– 1310. Available in: https://goo.su/I9SFLGF

Doran WJ, Cope WG, Rada RG, Sandheinrich MB. Acetylcholinesterase inhibition in the threeridge mussel (Amblema plicata) by chlorpyrifos: implications for biomonitoring Ecotoxicol. Environ. Saf. [Internet]. 2001; 49(1):91–98. doi: https://doi.org/fq62p8 DOI: https://doi.org/10.1006/eesa.2000.2036

Stalin A, Gokula V, Amanullah B. Effect of chlorpyrifos on biochemical changes in freshwater mussel Lamellidens marginalis. Int. J. Appl. Res. [Internet]. 2017 [cited Oct 12 2024]; 3(8):157–159. Available in: https://goo.su/qQK6qNZ

Marnett LJ. Oxy radicals, lipid peroxidation and DNA damage. Toxicol. [Internet]. 2002; 181–182:219–222. doi: https://doi.org/fdjh7n DOI: https://doi.org/10.1016/S0300-483X(02)00448-1

Ma J, Zhu P, Wang W, Zhang X, Wang P, Sultan Y, Li Y, Ding W, Li, X. Environmental impacts of chlorpyrifos: Transgenerational toxic effects on aquatic organisms cannot be ignored. Sci. Total Environ. [Internet]. 2023; 905:167311. doi: https://doi.org/gtt4sz DOI: https://doi.org/10.1016/j.scitotenv.2023.167311

Al–Fanharaw, AA, Rabee AM, Al–Mamoori AM. Multi– biomarker responses after exposure to organophosphates chlorpyrifos in the freshwater mussels Unio tigridis and snails Viviparous bengalensis. Hum. Ecol. Risk Assess. [Internet]. 2019; 25(5):1137–1156. doi: https://doi.org/gv33bz DOI: https://doi.org/10.1080/10807039.2018.1460800

Sharbidre AA, Metkari V, Patode P. Effect of methyl parathion and chlorpyrifos on certain biomarkers in various tissues of guppy fish, Poecilia reticulata. Pestic. Biochem. Physiol. [Internet]. 2011; 101(2):132–141 .doi: https://doi.org/dh37wk DOI: https://doi.org/10.1016/j.pestbp.2011.09.002

Köprücü K, Yonar SM, Şeker E. Effects of cypermethrin on antioxidant status, oxidative stress biomarkers, behavior, and mortality in the freshwater mussel Unio elongatulus eucirrus. Fish. Sci. [Internet]. 2010; 76:1007–1013. doi: https://doi.org/cgbb4s DOI: https://doi.org/10.1007/s12562-010-0293-8

Khazri A, Sellami B, Hanachi A, Dellali M, Eljarrat E, Beyrem H, Mahmoudi E. Neurotoxicity and oxidative stress induced by permethrin in gills of the freshwater mussel Unio ravoisieri. Chem. Ecol. [Internet]. 2017; 33(1):88–101. doi: https://doi.org/gwfbpw DOI: https://doi.org/10.1080/02757540.2016.1248948

Yonar ME, Mişe–Yonar SM. Changes in selected immunological parameters and antioxidant status of rainbow trout exposed to malachite green (Oncorhynchus mykiss, Walbaum, 1792). Pestic. Biochem. Physiol. [Internet]. 2010; 97(1):19–23. doi: https://doi.org/dkz8kb DOI: https://doi.org/10.1016/j.pestbp.2009.11.009

Cacciatore LC, Nemirovsky SI, Guerrero NRV, Cochón AC. Azinphos–methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquat. Toxicol. [Internet]. 2015; 167:12–19. doi: https://doi.org/f7vgz7 DOI: https://doi.org/10.1016/j.aquatox.2015.07.009

Gagné F. Biochemical ecotoxicology: principles and methods. London (UK): Academic Press; 2014. 282 p.

Mişe–Yonar S, Yonar ME, Pala A, Sağlam N, Sakin, F. Effect of trichlorfon on some haematological and biochemical changes in Cyprinus carpio: The ameliorative effect of lycopene. Aquac. Rep. [Internet]. 2020; 16:100246. doi: https://doi.org/gg4jp6 DOI: https://doi.org/10.1016/j.aqrep.2019.100246

Janaki–Devi V, NagaraniN, YokeshBabu M, Kumaraguru AK, Ramakritinan CM. A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere [Internet]. 2013; 90(3):1158–1166. doi: https://doi.org/f4mmkf DOI: https://doi.org/10.1016/j.chemosphere.2012.09.024

Georgieva E, Yancheva V, Stoyanova S, Velcheva I, Iliev I, Vasileva T, Bivolarski V, Petkova E, László B, Nyeste K, Antal L. Which is more toxic? Evaluation of the short–term toxic effects of chlorpyrifos and cypermethrin on selected biomarkers in common carp (Cyprinus carpio, Linnaeus 1758). Toxics [Internet] 2021; 9(6):125. doi: https://doi.org/gphn3d DOI: https://doi.org/10.3390/toxics9060125

Publicado
2025-04-28
Cómo citar
1.
Zorlar F, Şeker E, Pala A. Efectos del clorpirifos en el mejillón de agua dulce Unio elongatulus eucirrus (Bourguignat, 1860), con especial atención a la neurotoxicidad y las respuestas al estrés oxidativo. Rev. Cient. FCV-LUZ [Internet]. 28 de abril de 2025 [citado 24 de mayo de 2025];35(2):7. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/43813
Sección
Vida Silvestre