Resistencia antibiótica en bacterias cultivables aisladas del cangrejo Ucides occidentalis en el mayor manglar del Perú
Resumen
La resistencia antibiótica es un problema mundial que afecta a diversos ecosistemas, incluidos los manglares. El cangrejo de manglar Ucides occidentalis es el crustáceo más explotado para consumo humano en manglares de Perú y Ecuador. Por ello, se debe monitorear la presencia de bacterias resistentes a antibióticos, para proteger la salud de los consumidores. La investigación tuvo como objetivo determinar la resistencia antibiótica en cepas bacterianas cultivables aisladas de U. occidentalis en el manglar de Tumbes, el mayor del Perú. Se recolectaron 30 cangrejos, que fueron sacrificados y se extrajo muestras de su hepatopáncreas, intestino y hemolinfa, se sembraron en agar tiosulfato citrato bilis sacarosa y agar tripticasa soya. Las colonias se subcultivaron hasta cepas puras, que se identificaron molecularmente y se evaluó su resistencia contra 12 antibióticos. Como resultado se aislaron 35 cepas bacterianas de los géneros: Vibrio (17), Bacillus (9), Staphylococcus (4), Enterobacter (2), además de Exiguobacterium, Halomonas y Priestia (una cada uno). El 59,4 % de las cepas fueron resistentes hasta 4 antibióticos. Los géneros de mayor a menor resistencia a antibióticos fueron Enterobacter (100 % de sus cepas), Vibrio (70,6 %), Staphylococcus (50 %) y Bacillus (33,3 %). Las cepas fueron más resistentes a estreptomicina (40,7 %) y azitromicina (29,6 %), antibióticos empleados en clínica humana. Cuatro cepas de Vibrio spp., una de Staphylococcus epidermidis y una de Enterobacter cloacae resultaron multirresistentes. La mayoría son potencialmente patógenas y resistentes a antibióticos, por lo que constituyen un riesgo para los cangrejos y sus consumidores; por ello, se recomienda cocerlos bien para eliminar las bacterias que albergan.
Descargas
Citas
Grenni P, Ancona V, Barra A. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. [Internet]. 2018; 136:25–39. doi: https://doi.org/ggrptn DOI: https://doi.org/10.1016/j.microc.2017.02.006
Zhu XD, Wang YJ, Sun RJ, Zhou DM. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere [Internet]. 2013; 92:925–932. doi: https://doi.org/f45xx5 DOI: https://doi.org/10.1016/j.chemosphere.2013.02.066
Blaser MJ, Melby MK, Lock M, Nichter M. Accounting for variation in and overuse of antibiotics among humans. BioEssays [Internet]. 2021; 43(2):2000163. doi: https://doi.org/gqbnk5 DOI: https://doi.org/10.1002/bies.202000163
Bilal M, Mehmood S, Rasheed T, Iqbal HMN. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health. [Internet]. 2020; 13:68-74. doi: https://doi.org/gmcmn8 DOI: https://doi.org/10.1016/j.coesh.2019.11.005
Mesa–Ramos L, Palacios OA, Adame–Gallegos JR, Chávez–Flores D, Nevárez–Moorillón, GV. Assessing antibiotic residues in sediments from mangrove ecosystems: A review. Mar. Pollut. Bull. [Internet]. 2024; 204:116512. doi: https://doi.org/n728 DOI: https://doi.org/10.1016/j.marpolbul.2024.116512
Ordinola ZA, Vieyra EG, Ramírez BE, Saavedra KY. Diversidad genética y estructura poblacional del cangrejo del manglar (Ucides occidentalis) en Tumbes, Perú. Rev. Vet. [Internet]. 2020; 31:33–37. doi: https://doi.org/n73f DOI: https://doi.org/10.30972/vet.3114615
Morán B, Hidalgo A. Contaminantes en la bahía Puerto Pizarro. Manglar [Internet]. 2016 [consultado 30 Sep. 2024]; 13(2):33–42. Disponible en: https://goo.su/aynby1l DOI: https://doi.org/10.17268/manglar.2016.014
Grande FJ. Caracterización molecular de la resistencia antimicrobiana de Vibrio spp. aislado de langostinos blancos (Litopenaeus vannamei) cultivados en Tumbes [tesis de grado en Internet]. Lima (Perú): Universidad Peruana Cayetano Heredia; 2020 [consultado 24 Mar. 2024]. 73 p. Disponible en: https://goo.su/JflXVM
Royal Society for the Prevention of Cruelty to Animals. Humane killing and processing of crustaceans for human consumption [Internet]. Camberra (Australia): RSPCA; 2016 [consultado 15 Sep. 2024]. 9 p. Disponible en: https://goo.su/vEgU
Potosí KA. Efecto de Bacillus spp. aislados de Litopenaeus vannamei en la inhibición in vitro e in vivo de Vibrio spp. [tesis de grado en Internet]. Tumbes (Perú): Universidad Nacional de Tumbes; 2024 [consultado 24 Mar. 2024]. 71 p. Disponible en: https://goo.su/F7v7KD
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain–terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. [Internet]. 1977; 74(12):5463-5467. doi: https://doi.org/dgsrk5 DOI: https://doi.org/10.1073/pnas.74.12.5463
Benson DA, Cavanaugh M, Clark K, Karsch–Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. [Internet]. 2013; 41(D1):D36-D42. doi: https://doi.org/bsdd DOI: https://doi.org/10.1093/nar/gks1195
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: Improved data processing and web–based tools. Nucleic Acids Res. [Internet]. 2013; 41(D1):D590-D596. doi: https://doi.org/gfb6mr DOI: https://doi.org/10.1093/nar/gks1219
Hudzicki J. Kirby–Bauer disk diffusion susceptibility test protocol [Internet]. Washington D.C. (USA): American Society for Microbiology. 2009; [consultado 27 Nov. 2024]. 23 p. Disponible en: https://goo.su/yWTwKud
Aguirre LE, Sánchez–Suárez HA, Ordinola–Zapata A. Resistencia antibiótica en Vibrio spp aislados de camarón blanco Litopenaeus vannamei. Alternativas de tratamiento con extractos de Azadirachta indica y Origanum vulgare. Rev. Invest. Vet. Perú. [Internet]. 2021; 32(4):e19386. doi: https://doi.org/n736 DOI: https://doi.org/10.15381/rivep.v32i4.19386
Baron S, Lesne J, Jouy E, Larvor E, Kempf I, Boncy J, Rebaudet S, Piarroux R. Antimicrobial susceptibility of autochthonous aquatic Vibrio cholerae in Haiti. Front. Microbiol. [Internet]. 2016; 7:1671. doi: https://doi.org/ggrpzc DOI: https://doi.org/10.3389/fmicb.2016.01671
Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 26th Informational Supplement. Wayne (Pennsylvania, USA): CLSI; 2016. 256 p. (CLSI Supplement M100–S19).
Aidaros HA, Khalafallah SS, Diab MS, K. Alm Eldin N, El Bahgy HEK. Influence of hygienic measures on enterobacteriaceae prevalence and antimicrobial resistance in poultry farms. Adv. Anim. Vet. Sci. [Internet]. 2022; 10(10):2228-2237 doi: https://doi.org/n738 DOI: https://doi.org/10.17582/journal.aavs/2022/10.10.2228.2237
Clinical and Laboratory Standard Institute (CLSI). Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals. 3rd ed. Wayne (Pennsylvania, USA): CLSI; 2020. 72 p. (CLSI Supplement Vet04).
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 21th Informational Supplement. Wayne (Pennsylvania, USA): CLSI; 2011. (CLSI Supplement M100-S21).
Mughal SS, Bakhat S, Noor MQ ul H, Sohail R, Taj Y, Sarwar S, Sutti L, Faheem F. Fosfomycin resistance in clinical isolates of Escherichia coli from urinary tract infections in a tertiary care hospital. Pak. J. Med. Dent. [Internet]. 2023. 12(1):53-57. doi: https://doi.org/n74c
Petrovski K, Grinberg A, Williamson N, Abdalla M, Lopez–Villalobos N, Parkinson T, Tucker I, Rapnicki P. Susceptibility to antimicrobials of mastitis–causing Staphylococcus aureus, Streptococcus uberis and Str. dysgalactiae from New Zealand and the USA as assessed by the disk diffusion test. Aust. Veterinary. J. [Internet]. 2015; 93:227–233. doi: https://doi.org/f8tsb4 DOI: https://doi.org/10.1111/avj.12340
Adamski P, Byczkowska–Rostkowska Z, Gajewska J, Zakrzewski AJ, Kłębukowska L. Prevalence and antibiotic resistance of Bacillus sp. isolated from raw milk. Microorganisms. [Internet]. 2023; 11(4):1065. doi: https://doi.org/n74d DOI: https://doi.org/10.3390/microorganisms11041065
Carvalho MCN, Jayme MM, Arenazio GS, Araújo FV, Leite SGF, Del Aguila EM. Microbiological quality assessment by PCR and its antibiotic susceptibility in mangrove crabs (Ucides cordatus) from Guanabara Bay, Rio de Janeiro, Brazil. Int. J. Microbiol. [Internet]. 2016; 2016(1):7825031. doi: https://doi.org/n74f DOI: https://doi.org/10.1155/2016/7825031
Vieira RHSF, Lima EA, Sousa DBR, Reis EF, Costa RG, Rodrigues DP. Vibrio spp. and Salmonella spp., presence and susceptibility in crabs Ucides cordatus. Rev. Inst. Med. Trop. S. Paulo. [Internet]. 2004; 46(4):179–182. doi: https://doi.org/bhd7zn DOI: https://doi.org/10.1590/S0036-46652004000400001
Costa Filho J, Jorge S, Schmitt Kremer F, Rodrigues de Oliveira N, Farias Campos V, Da Silva Pinto L, Dellagostin OA, Galdino Feijó R, Rodrigues De Menezes FG, Viana de Sousa O, Maggioni R, Marins LF. Complete genome sequence of native Bacillus cereus strains isolated from intestinal tract of the crab Ucides sp. Data in Brief [Internet]. 2018; 16:381–385. doi: https://doi.org/n74g DOI: https://doi.org/10.1016/j.dib.2017.11.049
Soares TC, Gorlach–Lira K. Action of nisin and high pH on growth of Staphylococcus aureus and Salmonella sp. in pure culture and in the meat of land crab (Ucides cordatus). Braz. J. Microbiol. [Internet]. 2005; 36(2):151–156. doi: https://doi.org/cdj8jj DOI: https://doi.org/10.1590/S1517-83822005000200010
Soares TC, Gorlach–Lira K. The abundance of some pathogenic bacteria in mangrove habitats of Paraiba do Norte estuary and crabmeat contamination of mangrove crab Ucides cordatus. Braz. Arch. Biol. Technol. [Internet]. 2010; 53(1):227–234. doi: https://doi.org/fvfhq3 DOI: https://doi.org/10.1590/S1516-89132010000100028
Baskaran V, Mahalakshmi A, Prabavathy VR. Mangroves: A hotspot for novel bacterial and archaeal diversity. Rhizosphere [Internet]. 2023; 27:100748. doi: https://doi.org/n74n DOI: https://doi.org/10.1016/j.rhisph.2023.100748
Soto–Varela ZE, Orozco–Sánchez CJ, Bolívar–Anillo HJ, Martínez JM, Rodríguez N, Consuegra–Padilla N, Robledo–Meza A, Amils R. Halotolerant endophytic bacteria Priestia flexa 7BS3110 with Hg2+ tolerance isolated from Avicennia germinans in a caribbean mangrove from Colombia. Microorganisms [Internet]. 2024; 12(9):1857. doi: https://doi.org/n74p DOI: https://doi.org/10.3390/microorganisms12091857
Gao R, Sun K, Abdalla AE, Tian Z, An H, Zhang Z, Liu Y, Zeng X, He X, Fan X. Isolation, characterization, and preliminary application of three Vibrio phages in controlling Vibrio alginolyticus. LWT. [Internet]. 2024; 191:115638. doi: https://doi.org/n74q DOI: https://doi.org/10.1016/j.lwt.2023.115638
Ahmed HA, El Bayomi RM, Hussein MA, Khedr MHE, Abo EM, El–Ashram AMM. Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans. Int. J. Food Microbiol. [Internet]. 2018; 274:31–37. doi: https://doi.org/gnvc2t DOI: https://doi.org/10.1016/j.ijfoodmicro.2018.03.013
Tinoco VY. Potencial probiótico de bacterias ácido lácticas aisladas de Litopenaeus vannamei frente a Vibrio spp. resistentes y sensibles a antibióticos [tesis de grado en Internet]. Tumbes (Perú): Universidad Nacional de Tumbes; 2020. [consultado 10 Ene. 2024]. 62 p. Disponible en: https://goo.su/Bn9m
Ullah R, Yasir M, Bibi F, Abujamel TS, Hashem AM, Sohrab SS, Al–Ansari A, Al–Sofyani AA, Al–Ghamdi AK, Al–sieni A, Azhar EI. Taxonomic diversity of antimicrobial–resistant bacteria and genes in the Red Sea coast. Sci. Total Environ. [Internet]. 2019; 677:474–483. doi: https://doi.org/gztfrt DOI: https://doi.org/10.1016/j.scitotenv.2019.04.283
López L, Torres M, Zarza E, Henao–Castro A, Contreras L. Composition of the culturable bacterial community associated with the water column and soft tissues from oysters of the mangrove ecosystem at Honda Swamp, Colombian Caribbean. Univ. Sci. [Internet]. 2023; 28(1):43-63. doi: https://doi.org/n75c DOI: https://doi.org/10.11144/Javeriana.SC281.cotc
Jalal KCA, Nur UT, Mardiana MA, Akbar John B, Kamaruzzaman YB, Shahbudin S, Muhammad O. Antibiotic resistance microbes in tropical mangrove sediments in east coast peninsular, Malaysia. Afr. J. Microbiol. Res. [Internet]. 2010 [consultado 1 Oct. 2024]; 4(8):640–645. Disponible en: https://goo.su/0seHW
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ. Chem. Lett. [Internet]. 2022; 20:1929–1963. doi: https://doi.org/gs3zj9 DOI: https://doi.org/10.1007/s10311-022-01416-x
Preena PG, Swaminathan TR, Kumar VJR, Singh ISB. Antimicrobial resistance in aquaculture: a crisis for concern. Biologia [Internet]. 2020; 75:1497–1517. doi: https://doi.org/gr29v8 DOI: https://doi.org/10.2478/s11756-020-00456-4
De Cock A, Forio MAE, Croubels S, Dominguez–Granda L, Jacxsens L, Lachat C, Roa–López H, Ruales J, Scheyvaerts V, Solis MC, Spanoghe P, Tack FMG, Goethals PLM. Health risk–benefit assessment of the commercial red mangrove crab: Implications for a cultural delicacy. Sci. Total Environ. [Internet]. 2023; 862:160737. doi: https://doi.org/n75r DOI: https://doi.org/10.1016/j.scitotenv.2022.160737
Domínguez E, Gonzales LR. Conocimiento sobre tuberculosis pulmonar y actitud hacia el tratamiento de los pacientes que asisten al Centro de Salud Gerardo Gonzales Villegas – Tumbes, 2016. [tesis de grado en Internet]. Tumbes (Perú): Universidad Nacional de Tumbes, 2017 [consultado 22 Ago. 2024]. 59 p. Disponible en: https://goo.su/s4G79t8
Gwenzi W, Selvasembian R, Offiong N–AO, Mahmoud AED, Sanganyado E, Mal J. COVID-19 drugs in aquatic systems: a review. Environ. Chem. Lett. [Internet]. 2022; 20:1275–1294. doi: https://doi.org/gwf5np DOI: https://doi.org/10.1007/s10311-021-01356-y
Niquén MI, Vasquez AC, Hinojosa YA, Niquen AGG. Impactos ambientales generados por vertimiento de aguas residuales urbanas de la ciudad de Tumbes – Perú. RECIAMUC. [Internet]. 2021; 5(3):222–232. doi: https://doi.org/n76c DOI: https://doi.org/10.26820/reciamuc/5.(3).agosto.2021.222-232
Pérez Gaudio D, Colello R, Fernández D, Mozo J, Martínez G, Fernández Paggi M, Decundo J, Romanelli A, Dieguez S, Etcheverría A, Padola NL, Soraci AL. Horizontal transference of antimicrobial resistance genes between a non–pathogenic Escherichia coli and a pathogenic shiga toxin–producing E. coli strain. EC Vet. Sci. [Internet]. 2018 [consultado 30 Nov. 2024]; 3(2):293-299. Disponible en: https://goo.su/tSUT
James C, Dixon R, Talbot L, James SJ, Williams N, Onarinde BA. Assessing the impact of heat treatment of food on antimicrobial resistance genes and their potential uptake by other bacteria—A critical review. Antibiotics [Internet]. 2021; 10(12):1440. doi: https://doi.org/n76m DOI: https://doi.org/10.3390/antibiotics10121440

Derechos de autor 2025 Paúl Campaña–Maza, Nicole Vergara-Alfaro, Enedia Vieyra–Peña, Héctor Sánchez–Suárez, Marco Zapata-Cruz, Carlos Zamora-Gutiérrez, Auberto Hidalgo–Mogollón, Pedro Masías, Robert Peralta–Otero, Alberto Ordinola–Zapata

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.