Efectos de la Genisteína en la oseointegración de implantes de Titanio en un modelo experimental ovariectomizado

Palabras clave: Osteointegración, ovariectomía, osteoporosis, fitoestrógenos, genisteína

Resumen

La osteointegración es un desafío en el tratamiento con implantes dentales de individuos con osteoporosis. La genisteína es un fitoestrógeno con efectos beneficiosos en la prevención de la osteoporosis. Este estudio tiene como objetivo evaluar los efectos protectores de la suplementación con genisteína en el nivel de osteointegración de implantes de titanio en ratas ovariectomizadas. Las ratas en este estudio se dividieron aleatoriamente en 5 grupos con 8 ratas en cada grupo: Control, Implante, Ovariectomía–Implante, Ovariectomía–Implante–Genisteína, Implante–Genisteína. Los implantes fueron huesos tibiales de ratas integrados quirúrgicamente. La genisteína se administró a 2 mg·kg-1 por sonda oral tres veces por semana. Todas las ratas fueron sacrificadas al final de los 3 meses. Se realizaron análisis bioquímicos del suero sanguíneo de las ratas, análisis histomorfométricos del implante y los tejidos circundantes colocados en la tibia y análisis de densidad mineral ósea de las mandíbulas. La relación de conexión ósea del implante (BIC) del grupo Control–Implante fue mayor que los otros grupos (P<0,05). La relación BIC del grupo Ovariectomía–Implante fue menor que los grupos Ovariectomía–Implante–Genisteína e Implante–Genisteína (P<0,05). En cuanto al relleno de ranura, no se encontró diferencia estadísticamente significativa entre los grupos (P>0,05). La densidad mineral ósea de la mandíbula (BMD) del grupo control fue mayor que los grupos Ovariectomía–Implante e Implante–Genisteína (P<0,05). Al igual que los grupos Ovariectomía–Implante e Implante–Genisteína (P<0,05). En conclusión, se puede afirmar que la genisteína puede mejorar los efectos negativos de la ovariectomía sobre el hueso y aumentar la implante osteointegración. El consumo de genisteína puede aumentar la osteointegración del implante en casos osteoporóticos.

Descargas

Citas

Istek O, Tanrisever M, Atille Aydin M, Pak P, Eroksuz H, Karabulut B, Ekinci E, Dundar S. Evaluation of the effect of local bovine amniotic fluid on osseointegration of titanium implants: A histologic and histomorphometric study. Rev. Científ. FCV–LUZ. [Internet]. 2024; 34(2):e34417. doi: https://doi.org/n7nz DOI: https://doi.org/10.52973/rcfcv-e34417

Marcu T, Gal AF, Rațiu CA, Damian A, Ratiu IA. Adaptive structures proliferated in the rabbit shoulder after 8 weeks from the insertion of a titanium implant. J. Osseointegr. [Internet]. 2022; 14(3):180-184 doi: https://doi.org/n7n2

Nastri L, Moretti A, Migliaccio S, Paoletta M, Annunziata M, Liguori S, Toro G, Bianco M, Cecoro G, Guida L, Iolascon G. Do dietary supplements and nutraceuticals have effects on dental implant osseointegration? A scoping review. Nutrients [Internet]. 2020; 12(1):268. doi:. https://doi.org/gsjc9p DOI: https://doi.org/10.3390/nu12010268

Dikicier E, Karacayli U, Dikicier S, Gunaydin Y. Effect of systemic administered zoledronic acid on osseointegration of a titanium implant in ovariectomized rats. J. Craniomaxillofac. Surg. [Internet]. 2014; 42(7):1106-1111. doi: https://doi.org/n7n4 DOI: https://doi.org/10.1016/j.jcms.2014.01.039

Yogesh H. Evaluation of antiosteoporosis activity of ethanolic extract of Punica granatum Linn. seeds in ovariectomized–induced osteoporosis rats. Int. J. Green Pharm. [Internet]. 2020;14(1): 141-148. doi: https://doi.org/n7n6

Ishimi Y. [Kotsu taisha ni okeru shokumotsu to undō no yūyōsei ni kansuru kenkyū] A study of the effect of diet and physical activity on bone metabolism. Nippon Eiyo Shokuryo Gakkaishi [Internet]. 2019; 72(2):71-77. Japanese. doi: https://doi.org/n7qp DOI: https://doi.org/10.4327/jsnfs.72.71

Sahin K, Yenice E, Bilir B, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Kabil N, Ozpolat B, Kucuk O. Genistein prevents development of spontaneous ovarian cancer and inhibits tumor growth in hen model. Cancer Prev. Res. [Internet]. 2019; 12(3):135-146. doi: https://doi.org/n7qq DOI: https://doi.org/10.1158/1940-6207.CAPR-17-0289

Sahin K, Tuzcu M, Sahin N, Akdemir F, Ozercan I, Bayraktar S, Kucuk, O. Inhibitory effects of combination of lycopene and genistein on 7,12-dimethyl benz(a)anthracene–induced breast cancer in rats. Nutrit. Cancer. [Internet]. 2011; 63(8):1279-1286. doi: https://doi.org/bmjrkd DOI: https://doi.org/10.1080/01635581.2011.606955

Khajuria DK, Razdan R, Mahapatra DR. Description of a new method of ovariectomy in female rats. Rev. Bras. Reumatol. [Internet]. 2012 [cited 25 May 2024]; 52(3):462-470. PMID: 22641600. Available in: https://n9.cl/43ssz DOI: https://doi.org/10.1590/S0482-50042012000300016

Dundar S, Bozoglan A. Evaluation of the effects of topically applied simvastatin on titanium implant osseointegration. J. Oral Biol. Craniofac. Res. [Internet]. 2020; 10(2):149-152. doi: https://doi.org/n7qr DOI: https://doi.org/10.1016/j.jobcr.2020.04.004

Correa MG, Gomes Campos ML, César–Neto JB, Casati MZ, Nociti FH, Sallum EA. Histometric evaluation of bone around titanium implants with different surface treatments in rats exposed to cigarette smoke inhalation. Clin. Oral Implan. Res. [Internet]. 2009; 20(6):588-593. doi: https://doi.org/b359p5 DOI: https://doi.org/10.1111/j.1600-0501.2008.01695.x

Yousefzadeh N, Kashfi K, Jeddi S, Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. Excli J. [Internet]. 2020; 19:89-107. doi: https://doi.org/ghv7sr

Perilli E, Le V, Ma B, Salmon P, Reynolds K, Fazzalari N. Detecting early bone changes using in vivo micro–CT in ovariectomized, zoledronic acid–treated, and sham–operated rats. Osteoporosis Inter. [Internet]. 2010; 21(8):1371-1382. doi: https://doi.org/cbhpvt DOI: https://doi.org/10.1007/s00198-009-1082-z

Chen B, Li Y, Yang X, Xu H, Xie D. Zoledronic acid enhances bone–implant osseointegration more than alendronate and strontium ranelate in ovariectomized rats. Osteoporosis Inter. [Internet]. 2013; 24(7):2115-2121. doi: https://doi.org/f42wwc DOI: https://doi.org/10.1007/s00198-013-2288-7

Laib A, Kumer J, Majumdar S, Lane NE. The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporosis Inter. [Internet]. 2001; 12(11):936-941. doi: https://doi.org/dvv2vc DOI: https://doi.org/10.1007/s001980170022

Mellado–Valero A, Ferrer–García JC, Calvo–Catalá J, Labaig–Rueda C. Implant treatment in patients with osteoporosis. Med. Oral Patol. Oral Cir. Bucal [Internet]. 2010; 15(1):52-57. doi: https://doi.org/b2jk67 DOI: https://doi.org/10.4317/medoral.15.e52

Pleiner–Duxneuner J, Zwettler E, Paschalis E, Roschger P, Nell–Duxneuner V, Klaushofer K. Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcified Tissue Internat. [Internet]. 2009; 84(3):159-170. doi: https://doi.org/fmndqk DOI: https://doi.org/10.1007/s00223-009-9218-x

Gao Y, Zou S, Liu X, Bao C, Hu J. The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite–coated titanium implants in ovariectomized rats. Biomaterials [Internet]. 2009; 30(9):1790-1796. doi: https://doi.org/dkrt79 DOI: https://doi.org/10.1016/j.biomaterials.2008.12.025

Fujioka M, Uehara M, Wu J, Adlercreutz H, Suzuki K, Kanazawa K, Takeda K, Yamada K, Ishimi Y. Equol, a metabolite of daidzein, inhibits bone loss in ovariectomized mice. J. Nutr. [Internet]. 2004; 134(10):2623-2627. doi: https://doi.org/n7qt DOI: https://doi.org/10.1093/jn/134.10.2623

Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front. Neuroendocrinol. [Internet]. 2010; 31(4):400-419. doi: https://doi.org/cnz8q7 DOI: https://doi.org/10.1016/j.yfrne.2010.03.003

Santos Filho LED, Santos GPLD, Silva JA, Silva FA, Silva MN, Almeida AA, Coqueiro RDS, Coimbra CC, Soares TJ, Magalhães ACM. Dietary soy isoflavones prevent metabolic disturbs associated with a deleterious combination of obesity and menopause. J. Med. Food. [Internet]. 2023; 26(2):104-113. doi: https://doi.org/n7qv DOI: https://doi.org/10.1089/jmf.2022.0055

Alekel DL, Germain AS, Peterson CT, Hanson KB, Stewart JW, Toda T. Isoflavonerich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am. J. Clin. Nutrit. [Internet]. 2000; 72(3):844-852. doi: https://doi.org/n7qw DOI: https://doi.org/10.1093/ajcn/72.3.844

Wu J, Oka J, Tabata I, Higuchi M, Toda T, Fuku N, Ezaki J, Sugiyama F, Uchiyama S, Yamada K, Ishimi Y. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women: a 1-year randomized placebo–controlled trial. J. Bone Miner. Res. [Internet]. 2006; 21(5):780-789. doi: https://doi.org/drvss4 DOI: https://doi.org/10.1359/jbmr.060208

Keikhosravi F, Daryanoosh F, Koushkie Jahromi M, Nemati J. High–intensity interval training effects with genistein on serum osteocalcin and bone alkaline phosphatase in female elderly rats. J. Nutrit. Fasting Health [Internet]. 2021; 9(2):125-130. doi: https://doi.org/n7qx

Qi S, Zheng H. Combined effects of phytoestrogen genistein and silicon on ovariectomy–induced bone loss in rat. Biol. Trace Elem. Res. [Internet]. 2017; 177(2):281-287. doi: https://doi.org/f98bhf DOI: https://doi.org/10.1007/s12011-016-0882-1

Park JH, Omi N, Nosaka T, Kitajima A, Ezawa I. Estrogen deficiency and low–calcium diet increased bone loss and urinary calcium excretion but did not alter arterial stiffness in young female rats. J. Bone Miner. Metabol. [Internet]. 2008; 26(3):218-225. doi: https://doi.org/fmdtg4 DOI: https://doi.org/10.1007/s00774-007-0822-4

Yang L, Yu Z, Qu H, Li M. Comparative effects of hispidulin, genistein, and icariin with estrogen on bone tissue in ovariectomized rats. Cell Biochem. Biophysics [Internet]. 2014; 70(1):485-490. doi: https://doi.org/n7qz DOI: https://doi.org/10.1007/s12013-014-9945-0

Huang Q, Huang R, Zhang S, Lin J, Wei L, He M, Zhuo L, Lin X. Protective effect of genistein isolated from Hydrocotyle sibthorpioides on hepatic injury and fibrosis induced by chronic alcohol in rats. Toxicol. Lett. [Internet]. 2013; 217(2):102-110. doi: https://doi.org/n7q2 DOI: https://doi.org/10.1016/j.toxlet.2012.12.014

Mendes Duarte P, Neto JBC, Gonçalves PF, Sallum EA, Nociti FHJr. Estrogen deficiency affects bone healing around titanium implants: a histometric study in rats. Implant. Dentis. [Internet]. 2003; 12(4):340-346. doi: https://doi.org/bg798k DOI: https://doi.org/10.1097/01.ID.0000099750.26582.4B

Giro G, Gonçalves D, Sakakura CE, Pereira RMR, Marcantonio Júnior E, Orrico SRP. Influence of estrogen deficiency and its treatment with alendronate and estrogen on bone density around osseointegrated implants: radiographic study in female rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. [Internet]. 2008; 105(2):162-167. doi: https://doi.org/dbh364 DOI: https://doi.org/10.1016/j.tripleo.2007.06.010

Cui B, Bai T, Wu Q, Hu Y, Liu Y. Pre–implantation teriparatide administration improves initial implant stability and accelerates the osseointegration process in osteoporotic rats. Int. J. Implant. Dent. [Internet]. 2024; 10(1):18. doi: https://doi.org/n7q4 DOI: https://doi.org/10.1186/s40729-024-00536-z

Lee JH, Han S–S, Lee C, Kim YH, Battulga B. Microarchitectural changes in the mandibles of ovariectomized rats: a systematic review and meta–analysis. BMC Oral Health [Internet]. 2019; 19(1):128. doi: https://doi.org/n7q5 DOI: https://doi.org/10.1186/s12903-019-0799-0

Dundar S, Bozoglan A, Bulmus O, Tekin S, Yildirim TT, Kirtay M, Toy VE, Gul M, Bozoglan MY. Effects of restraint stress and high–fat diet on osseointegration of titanium implants: an experimental study. Braz Oral Res. [Internet]. 2020; 34:e008. doi: https://doi.org/n7q6 DOI: https://doi.org/10.1590/1807-3107bor-2020.vol34.0008

Publicado
2025-02-24
Cómo citar
1.
Uzun CB, Dundar S, Kom M, Yildirim TT, Bozoglan A, Balci TA, Orhan C, Sahin K. Efectos de la Genisteína en la oseointegración de implantes de Titanio en un modelo experimental ovariectomizado. Rev. Cient. FCV-LUZ [Internet]. 24 de febrero de 2025 [citado 31 de marzo de 2025];35(1):10. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/43585
Sección
Medicina Veterinaria