Efectos hepatoprotectores de la Silimarina en la aflatoxicosis experimental en pollos de engorde
Resumen
La aflatoxicosis es una micotoxicosis causada por aflatoxinas en animales y humanos. La aflatoxicosis provoca importantes pérdidas económicas en los animales y representa una amenaza para la salud humana. El objetivo de este estudio fue investigar el efecto protector de la Silimarina, con propiedades antioxidantes, contra la aflatoxicosis en pollos de engorde. Treinta y dos pollos de engorde fueron divididos aleatoriamente en cuatro grupos experimentales: control, tratados con Silimarina, tratados con Aflatoxina–B1 (AFB1) y tratados con AFB1+Silimarina. Los pollos en los grupos control y tratados con Silimarina fueron alimentados con una dieta sin aflatoxina. Los grupos AFB1 y AFB1+Silimarina recibieron aproximadamente 1 mg de aflatoxina/pollo/total durante veintiún días. El grupo AFB1+Silimarina también recibió 10 g de Silimarina por kg de alimento como dieta suplementaria durante 21 días. Desde un punto de vista bioquímico, los niveles hepáticos y séricos de TAS, SOD, GSH–Px, CAT y BcL–2 en el grupo AFB1 fueron inferiores al control, mientras que los niveles séricos de TOS y los niveles de Caspasa–3 en suero e hígado fueron altos (P<0,001). Además, en el grupo AFB1+Silimarina, los valores de GSH–Px, SOD y BcL–2 en hígado y suero, y los valores de CAT en suero fueron significativamente más altos que en el grupo AFB1 (P<0,001). También, en el grupo AFB1+Silimarina, hubo un ligero aumento en el nivel de CAT en las muestras de hígado en comparación con el grupo AFB1 (P>0,05). Además, los niveles de TOS y Caspasa–3 en suero e hígado en el grupo AFB1+Silimarina fueron bajos, mientras que los niveles de BcL–2 en suero fueron significativamente más altos en comparación con el grupo AFB1 (P<0,001). Patológicamente, los hígados eran más grandes y pálidos en el grupo AFB1. En términos histopatológicos, se observaron degeneración hidrópica/vacuolar difusa y fibrosis caracterizada por la activación de células miofibroblásticas perisinusoidales (células de Ito) en el grupo AFB1. Estos cambios morfológicos se redujeron significativamente en el grupo AFB1+Silimarina. Estos hallazgos indican que la Silimarina, con su fuerte efecto antioxidante, puede ser eficaz contra la aflatoxicosis en la prevención del daño hepático en pollos de engorde.
Descargas
Citas
Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food–crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Crit. Rev. Food. Sci. Nutr. [Internet]. 2020; 60(16):2773–2789. doi: https://doi.org/gncv68 DOI: https://doi.org/10.1080/10408398.2019.1658570
Santos–Pereira C, Cunha SC, Fernandes JO. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins. [Internet]. 2019; 11(5):290. doi: https://doi.org/ghmsgx DOI: https://doi.org/10.3390/toxins11050290
Emerole GO, Neskovic N, Dixon RL. The detoxication of aflatoxin B1 with glutathione in the rat. Xenobiotica. [Internet]. 1979; 9(12):737–743. doi: https://doi.org/cswzdz DOI: https://doi.org/10.3109/00498257909042342
Essigmann JM, Croy RG, Bennett RA, Wogan GN. Metabolic activation of aflatoxin B1: patterns of DNA adduct formation, removal, and excretion in relation to carcinogenesis. Drug. Metab. Rev. [Internet]. 1982; 13(4):581–602. doi: https://doi.org/b4bjrs DOI: https://doi.org/10.3109/03602538209011088
Arafa AS, Bloomer RJ, Wilson HR, Simpson CF, Harms RH. Susceptibility of various poultry species to dietary aflatoxin. Br. Poult. Sci. [Internet]. 1981; 22(5):431–436. doi: https://doi.org/cbprn9 DOI: https://doi.org/10.1080/00071688108447906
Rajput SA, Sun L, Zhang N–Y, Khalil MM, Ling Z, Chong L, Wang S, Rajput IR, Bloch DM, Khan FA, Shaukat A, Qi D. Grape seed proanthocyanidin extract alleviates aflatoxinB1–induced immunotoxicity and oxidative stress via modulation of NF–κB and Nrf2 signaling pathways in broilers. Toxins. [Internet]. 2019; 11(1):23. doi: https://doi.org/n337 DOI: https://doi.org/10.3390/toxins11010023
Aly SA, Anwer W. Effect of naturally contaminated feed with aflatoxins on performance of laying hens and the carryover of aflatoxin B1 residues in table eggs. Pak. J. Nutr. [Internet]. 2009; 8(2):181–186. doi: https://doi.org/cmzp63 DOI: https://doi.org/10.3923/pjn.2009.181.186
Kubena LF, Huff WE, Harvey RB, Yersin AG, Elissalde MH, Witzel DA, Giroir LE, Phillips TD, Petersen HD. Effects of a hydrated sodium calcium aluminosilicate on growing turkey poults during aflatoxicosis. Poult. Sci. [Internet]. 1991; 70(8):1823–1830. doi: https://doi.org/n338 DOI: https://doi.org/10.3382/ps.0701823
Doerr JA, Huff WE, Wabeck CJ, Chaloupka GW, May JD, Merkley JW. Effects of low level chronic aflatoxicosis in broiler chickens. Poult. Sci. [Internet]. 1983; 62(10):1971–1977. doi: https://doi.org/n339 DOI: https://doi.org/10.3382/ps.0621971
Loi M, Paciolla C, Logrieco AF, Mulè G. Plant bioactive compounds in pre–and postharvest management for aflatoxins reduction. Front. Microbiol. [Internet]. 2020; 11: 243. doi: https://doi.org/n34b DOI: https://doi.org/10.3389/fmicb.2020.00243
Phillips TD, Kubena LF, Harvey RB, Taylor DR, Heidelbaugh ND. Hydrated sodium calcium aluminosilicate: a high affinity sorbent for aflatoxin. Poult. Sci. [Internet]. 1988; 67(2):243–247. doi: https://doi.org/n34c DOI: https://doi.org/10.3382/ps.0670243
Oguz H, Kurtoglu V. Effect of clinoptilolite on performance of broiler chickens during experimental aflatoxicosis. Br. Poult. Sci. [Internet]. 2000; 41(4):512–517. doi https://doi.org/c4rhpd DOI: https://doi.org/10.1080/713654953
Rosa CA, Miazzo R, Magnoli C, Salvano M, Chiacchiera SM, Ferrero S, Saenz M, Carvalho EC, Dalcero A. Evaluation of the efficacy of bentonite from the south of Argentina to ameliorate the toxic effects of aflatoxin in broilers. Poult. Sci. [Internet]. 2001; 80(2):139–144. doi: https://doi.org/n34d DOI: https://doi.org/10.1093/ps/80.2.139
Ramos AJ, Fink–Gremmels J, Hernández E. Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds. J. Food. Prot. [Internet]. 1996; 59(6):631–641. doi: https://doi.org/gncv6p DOI: https://doi.org/10.4315/0362-028X-59.6.631
Valenzuela–Grijalva NV, Pinelli–Saavedra A, Muhlia–Almazan A, Domínguez–Díaz D, González–Ríos H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Biotechnol. [Internet]. 2017; 59:1–17. doi: https://doi.org/n34f DOI: https://doi.org/10.1186/s40781-017-0133-9
Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn. Rev. [Internet]. 2012; 6(11):1–5. doi: https://doi.org/ghx8xd DOI: https://doi.org/10.4103/0973-7847.95849
Oso AO, Suganthi RU, Manjunatha–Reddy GB, Malik PK, Thirumalaisamy G, Awachat VB, Selvaraju S, Arangasamy A, Bhatta R. Effect of dietary supplementation with phytogenic blend on growth performance, apparent ileal digestibility of nutrients, intestinal morphology, and cecal microflora of broiler chickens. Poult. Sci. [Internet]. 2019; 98(10):4755–4766. doi: https://doi.org/n34g DOI: https://doi.org/10.3382/ps/pez191
Priya K, Preethy J, Usha P, Kariyil BJ, Uma R. Antioxidant effect of Eclipta prostrata (L.) leaf powder in broiler chicken during aflatoxicosis. Pharma. Innov. [Internet]. 2019[cited 12 Jul. 2024]; 8(4):801–803. Available in: https://n9.cl/ru3v3
Pradhan SC, Girish C. Hepatoprotective herbal drug, Silymarin from experimental pharmacology to clinical medicine. Indian J. Med. Res. [Internet]. 2006[cited 10 Jul. 2024]; 124(5):491–504. Available in: https://n9.cl/7mcpk1
Koushki M, Yekta RF, Amiri–Dashatan N. Critical review of therapeutic potential of Silymarin in cancer: A bioactive polyphenolic flavonoid. J. Funct. Foods. [Internet]. 2023; 104(6):105502. doi: https://doi.org/gt29bn DOI: https://doi.org/10.1016/j.jff.2023.105502
Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF–induced activation of NF–κB, c–Jun N–terminal kinase, and apoptosis. J. Immun. [Internet]. 1999; 163(12):6800–6809. doi: https://doi.org/n34h DOI: https://doi.org/10.4049/jimmunol.163.12.6800
Chand N, Muhammad D, Durrani FR, Qureshi MS, Sahibzada SU. Protective effects of milk thistle (Silybum marianum) against aflatoxin B1 in broiler chicks. Asian–Australasian J. Anim. Sci. [Internet]. 2011; 24(7):1011–1018. doi: https://doi.org/fnrvzk DOI: https://doi.org/10.5713/ajas.2011.10418
Tedesco D, Steidler S, Galletti S, Tameni M, Sonzogni O, Ravarotto L. Efficacy of Silymarin–phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. Poult. Sci. [Internet]. 2004; 83(11):1839–1843. doi: https://doi.org/gqcjvw DOI: https://doi.org/10.1093/ps/83.11.1839
Hasheminejad SA, Makki OF, Nik HA, Ebrahimzadeh A. The effects of aflatoxin B1 and Silymarin–containing milk thistle seeds on ileal morphology and digestibility in broiler chickens. Vet. Sci. Dev. [Internet]. 2015; 5(2):115–119. doi: https://doi.org/n34j DOI: https://doi.org/10.4081/vsd.2015.6017
Makki OF, Omidi A, Nik HA, Hasheminejad SA, Senjedak SMH. Anti–aflatoxin B1 effects of Shirazi thyme (Zataria multiflora) in broilers: evaluation of performance and liver histopathology. Vet. Sci. Dev. [Internet]. 2016 ;6(1):36–40. doi: https://doi.org/n34k DOI: https://doi.org/10.4081/vsd.2016.6090
Jahanian E, Mahdavi AH, Asgary S, Jahanian R. Effects of dietary inclusion of Silymarin on performance, intestinal morphology and ileal bacterial count in aflatoxin–challenged broiler chicks. J. Anim. Physiol. Anim. Nutr. [Internet]. 2017; 101(5):e43–e54. doi: https://doi.org/n34m DOI: https://doi.org/10.1111/jpn.12556
Suchý P, Straková E, Kummer V, Herzig I, Písaříková V, Blechová R, Mašková J. Hepatoprotective effects of milk thistle (Silybum marianum) seed cakes during the chicken broiler fattening. Acta Vet. Brno. [Internet]. 2008; 77(1):31–38. doi: https://doi.org/cfhhsg DOI: https://doi.org/10.2754/avb200877010031
Amiridumari H, Sarir H, Afzali N, Fanimakki O. Effects of milk thistle seed against aflatoxin B1 in broiler model. J. Res. Med. Sci. [Internet]. 2013 [cited 22 Jul. 2024]; 18(9):786. Available in: https://n9.cl/xyauzq
Banu GS, Kumar G, Murugesan AG. Ethanolic leaves extract of Trianthema portulacastrum L. ameliorates aflatoxin B1 induced hepatic damage in rats. Indian J. Clin. Biochem. [Internet]. 2009; 24(3):250–256. doi: https://doi.org/dz3x53 DOI: https://doi.org/10.1007/s12291-009-0047-5
Youssef SF, Sayed–Elahl RMH, Mohamed MHA, El–Gabry HE, El–Halim A, Hassan AH, Eshera AA. Supplementing growing quail diets with Silymarin and curcumin to improve productive performance and antioxidant status and alleviate aflatoxin b1 adverse effects during the summer season. Egypt. J. Agric. Res. [Internet]. 2022; 100(4):529–539. doi: https://doi.org/n34p DOI: https://doi.org/10.21608/ejar.2022.155457.1263
Ortatatli M, Oğuz H, Hati̇poğlu F, Karaman M. Evaluation of pathological changes in broilers during chronic aflatoxin (50 and 100 ppb) and clinoptilolite exposure. Res. J. Vet. Sci. [Internet]. 2005; 78(1):61–68. doi: https://doi.org/ckvn7t DOI: https://doi.org/10.1016/j.rvsc.2004.06.006
Li S, Muhammad I, Yu H, Sun X, Zhang X. Detection of Aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1–induced liver damage in chickens. Ecotoxicol. Environ. Saf. [Internet]. 2019; 176:137–145. doi: https://doi.org/gwhnrg DOI: https://doi.org/10.1016/j.ecoenv.2019.03.089
Wang XH, Li W, Wang XH, Han MY, Muhammad I, Zhang XY, Sun XQ, Cui XX. Water–soluble substances of wheat: a potential preventer of aflatoxin B1–induced liver damage in broilers. Poult. Sci. [Internet]. 2019;98 (1): 136–149. doi: https://doi.org/gtgzmw DOI: https://doi.org/10.3382/ps/pey358
Uyar A, Yener Z, Dogan A. Protective effects of Urtica dioica seed extract in aflatoxicosis: histopathological and biochemical findings. Br. Poult. Sci. [Internet]. 2016; 57(2):235–245. doi: https://doi.org/ghzkfs DOI: https://doi.org/10.1080/00071668.2015.1129664
Karaman M, Ozen H, Tuzcu M, Çİğremİş Y, Onder F, Ozcan K. Pathological, biochemical and haematological investigations on the protective effect of α–lipoic acid in experimental aflatoxin toxicosis in chicks. Br. Poult. Sci. [Internet]. 2010; 51(1):132–141. doi: https://doi.org/bg66gd DOI: https://doi.org/10.1080/00071660903401839
Enzan H, Hara H, Himeno H, Iwamura S, Saibara T, Onishi S, Yamamoto Y. Immunohistochemical identification of Ito cells and their myofibroblastic transformation in adult human liver. Virchows Arch. [Internet]. 1994; 424(3): 249–256. doi: https://doi.org/cpqgs8 DOI: https://doi.org/10.1007/BF00194608
Jubb KVF. Pathology of Domestic Animals. 3th ed. Orlando (FLA, USA): Academic Press; 1985. 557 p.
Dohnal V, Wu Q, Kuča K. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch. Toxicol. [Internet]. 2014; 88(9):1635–1644. doi: https://doi.org/f6d3w4 DOI: https://doi.org/10.1007/s00204-014-1312-9
Gowda NKS, Rajendran US, Malathi V, Anjanappa R. Effectiveness of hydrated sodium calcium alumino silicate for preventing aflatoxin toxicity in sheep. Anim. Nutr. Feed. Technol. 2006; 6(2):243–250.
Benkerroum N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public. Health. [Internet]. 2020; 17(2):423. doi: https://doi.org/grg6bc DOI: https://doi.org/10.3390/ijerph17020423
Prakoso YA, Puspitasari, Rini CS, Aliviameita A, Salasia SIO, Kurniasih, Ikram AFD, Walalangi B, Utama KP, Al Huda MF, Su’udiyah NA. The role of Sauropus androgynus (L.) Merr. leaf powder in the broiler chickens fed a diet naturally contaminated with aflatoxin. J. Toxicol. [Internet]. 2018; 1:2069073. doi: https://doi.org/n34v DOI: https://doi.org/10.1155/2018/2069073
Manafi M, Hedayati M, Yari M. Effectiveness of rosemary (Rosmarinus officinalis L.) essence on performance and immune parameters of broilers during aflatoxicosis. Adv. Life Sci. [Internet]. 2014 [cited 22 Jul. 2024]; 4(3):166–173. Available in: https://goo.su/VOmv
Yarru LP, Settivari RS, Antoniou E, Ledoux DR, Rottinghaus GE. Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks. Poult. Sci. [Internet]. 2009; 88(2):360–371. doi: https://doi.org/c9dwrc DOI: https://doi.org/10.3382/ps.2008-00258
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. [Internet]. 2007; 39(1):44–84. doi: https://doi.org/bdqwsb DOI: https://doi.org/10.1016/j.biocel.2006.07.001
Towner RA, Qian SY, Kadiiska MB, Mason RP. In vivo identification of aflatoxin–induced free radicals in rat bile. Free. Radic. Res. [Internet]. 2003; 35(10):1330–1340. doi: https://doi.org/chzvvk DOI: https://doi.org/10.1016/j.freeradbiomed.2003.08.002
Ajiboye TO, Yakubu MT, Oladiji AT. Lophirones B and C prevent aflatoxin B1–induced oxidative stress and DNA fragmentation in rat hepatocytes. Pharm. Biol. [Internet]. 2016; 54(10):1962–1970. doi: https://doi.org/n35f DOI: https://doi.org/10.3109/13880209.2015.1137603
Umaya SR, Vijayalakshmi YC, Sejian V. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon. [Internet]. 2021; 200:55–68. doi: https://doi.org/gt33qw DOI: https://doi.org/10.1016/j.toxicon.2021.06.017

Derechos de autor 2025 Keleş Ömer Faruk, Zübeyir Huyut

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.