Efecto de la suplementación con una mezcla de aceites esenciales nanoencapsulados en dietas de gallinas Lohmann Brown sobre el porcentaje de postura, calidad y estabilidad oxidativa del huevo
Resumen
Los aceites esenciales han demostrado efectos beneficiosos en los parámetros productivos de las aves de corral. Sin embargo, el impacto de las mezclas de aceites esenciales nanoencapsulados (N–EOs) en la dieta de las gallinas ponedoras ha sido poco descrito. El objetivo de la investigación fue evaluar el efecto mezclas de N–EOs en dietas de gallinas Lohmann Brown sobre el porcentaje de postura, calidad y estabilidad oxidativa del producto huevo. 600 aves fueron distribuidas aleatoriamente en cinco grupos (n=150 por grupo), según un diseño completamente al azar. El grupo control recibió una dieta convencional no suplementada, mientras que los grupos experimentales recibieron mezclas de N–EOs a base de guanábana (S), limón (L) y eucalipto (E) en diferentes proporciones: T1 (S:33,4 %; L:33,3 %; E:33,3 %); T2 (S:50 %; L:25 %; E:25 %); T3 (S:25 %; L:50 %; E:25 %) y T4 (S:25 %; L:25 %; E:50 %). Los resultados mostraron que el grupo T4 tuvo la mayor tasa de postura en comparación a los grupos T2 y T3 (P<0,05), aunque fue similar a T0 y T1. Comparativamente la conversión alimenticia fue mejor en el tratamiento T4 con respecto al T0 (P<0,05). El análisis de la calidad del huevo mostró que los tratamientos T1 yT2 alcanzaron un mayor espesor de cascara (mm),en comparación al grupo con dieta convencional (P<0,05). La estabilidad oxidativa de la yema de huevo evaluada a través de los niveles de malondialdehído (MDA), mostraron que tanto el grupo T1 y T4 presentaban niveles más bajos de MDA (P>0,05) en comparación a la dieta estándar (T0). En conclusión, dietas con N–EOs constituyen una opción prometedora que favorece la conversión alimenticia, el porcentaje postura, y un mayor espesor de cáscara de los huevos de gallinas ponedoras.
Descargas
Citas
Rondoni A, Asioli D, Millan E. Consumer behaviour, perceptions, and preferences towards eggs: A review of the literature and discussion of industry implications. Trends. Food. Sci. Technol. [Internet]. 2020; 106:391-401. doi: https://doi.org/gmg9r4 DOI: https://doi.org/10.1016/j.tifs.2020.10.038
Dávalos–Almeyda M, Guerrero A, Medina G, Dávila–Barclay A, Salvatierra G, Calderón M, Gilman RH, Tsukayama P. Antibiotic use and resistance knowledge assessment of personnel on chicken farms with high levels of antimicrobial resistance: a cross–sectional survey in Ica, Peru. Antibiotics [Internet]. 2022; 11(2):190. doi: https://doi.org/nz7k DOI: https://doi.org/10.3390/antibiotics11020190
Mbarga–Manga JA, Smolyakova LA, Podoprigora IV. Evaluation of apparent microflora and study of antibiotic resistance of coliforms isolated from the shells of poultry eggs in Moscow–Russia. J. Adv. Microbiol. [Internet]. 2020; 20(4):70-77. doi: https://doi.org/g8x469 DOI: https://doi.org/10.9734/jamb/2020/v20i430242
European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J. [Internet]. 2024; 22(2):e8553. doi: https://doi.org/nr2j DOI: https://doi.org/10.2903/j.efsa.2024.8583
Zhu T, Chen T, Cao Z, Zhong S, Wen X, Mi J, Ma B, Zou Y, Zhang N, Liao X, Wang, Y. Wu Y. Antibiotic resistance genes in layer farms and their correlation with environmental samples. Poult. Sci. [Internet]. 2021; 100(12):101485. doi: https://doi.org/gqmhfr DOI: https://doi.org/10.1016/j.psj.2021.101485
Murray M, Salvatierra G, Dávila–Barclay A, Ayzanoa B, Castillo–Vilcahuaman C, Huang M, Pajuelo MJ, Lescano AG, Cabrera L, Calderón M, Berg DE, Gilman RH, Tsukayama P. Market chickens as a source of antibiotic–resistant Escherichia coli in a peri–urban community in Lima, Peru. Front. Microbiol. [Internet]. 2021; 12:635871. doi: https://doi.org/gqwght DOI: https://doi.org/10.3389/fmicb.2021.635871
Seidavi A, Tavakoli M, Slozhenkina M, Gorlov I, Hashem NM, Asroosh F, Taha AE, Abd El–Hack ME, Swelum AA. The use of some plant–derived products as effective alternatives to antibiotic growth promoters in organic poultry production: a review. Environ. Sci. Pollut. Res. [Internet]. 2021; 28:47856-47868. doi: https://doi.org/kmht DOI: https://doi.org/10.1007/s11356-021-15460-7
Ding X, Wu X, Zhang K, Bai S, Wang J, Peng HW, Xuan Y, Su Z, Zeng Q. Dietary supplement of essential oil from oregano affects growth performance, nutrient utilization, intestinal morphology and antioxidant ability in Pekin ducks. J. Anim. Physiol. Anim. Nutr. [Internet]. 2020; 104(4):1067-1074. doi: https://doi.org/g8x47b DOI: https://doi.org/10.1111/jpn.13311
Loyaga–Cortéz B, Mendoza Ordoñez G, Ybañez–Julca R, Asunción–Alvarez D. La suplementación de aceite esencial de orégano en la dieta reduce el estrés oxidativo en la yema de huevo y mejora los parámetros productivos de la codorniz japonesa (Coturnix coturnix japonica). Rev. Investig. Vet. Perú. [Internet]. 2020; 31(3):e16637. doi: https://doi.org/kmhr DOI: https://doi.org/10.15381/rivep.v31i3.16637
Mendoza–Ordoñez G, Caceda–Gallardo L, Loyaga–Cortéz B, Ybañez–Julca R, Gonzales–Nonato D, Asunción–Alvarez D. Oregano essential oil supplementation improves productive performance, oxidative stability, and lipid parameters in turkeys. Sci. Agropec. [Internet]. 2020; 11(2):187-193. doi: https://doi.org/kmhs DOI: https://doi.org/10.17268/sci.agropecu.2020.02.05
Bhavaniramya S, Vishnupriya S, Al–Aboody MS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. GOST [Internet]. 2019; 2(2):49-55. doi: https://doi.org/ghw443 DOI: https://doi.org/10.1016/j.gaost.2019.03.001
Irawan A, Hidayat C, Jayanegara A, Ratriyanto A. Essential oils as growth–promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta–analysis. Anim. Biosci. [Internet]. 2021; 34(9):1499-1513. doi: https://doi.org/kmgt DOI: https://doi.org/10.5713/ab.20.0668
Sidiropoulou E, Skoufos I, Marugan–Hernandez V, Giannenas I, Bonos E, Aguiar–Martins K, Lazari D, Blake DP, Tzora A. In vitro Anticoccidial study of oregano and garlic essential oils and effects on growth performance, fecal oocyst output, and intestinal microbiota in vivo. Front. Vet. Sci. [Internet]. 2020; 7:420. doi: https://doi.org/gnb6qv DOI: https://doi.org/10.3389/fvets.2020.00420
Vinceković M, Viskić M, Jurić S, Giacometti J, Bursać–Kovačević D, Putnik P, Donsì F, Barba FJ, Režek–Jambrak A. Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci. Technol. [Internet]. 2017; 69(Part. A):1-12. doi: https://doi.org/gcnmn6 DOI: https://doi.org/10.1016/j.tifs.2017.08.001
Lammari N, Louaer O, Meniai AH, Elaissari A. Encapsulation of essential oils via nanoprecipitation process: overview, progress, challenges and prospects. Pharmaceutics [Internet]. 2020; 12(5):431. doi: https://doi.org/gk5d8w DOI: https://doi.org/10.3390/pharmaceutics12050431
Amiri N, Afsharmanesh M, Salarmoini M, Meimandipour A, Hosseini SA, Ebrahimnejad H. Nanoencapsulation (in vitro and in vivo) as an efficient technology to boost the potential of garlic essential oil as alternatives for antibiotics in broiler nutrition. Animal [Internet]. 2021; 15(1):100022. doi: https://doi.org/gqkzwd DOI: https://doi.org/10.1016/j.animal.2020.100022
Nouri A. Chitosan nano–encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens. Br. Poult. Sci. [Internet]. 2019; 60(5):530-538. doi: https://doi.org/g8x47c DOI: https://doi.org/10.1080/00071668.2019.1622078
Mendoza–Ordoñez G, Loyaga–Cortéz B, Asunción–Alvarez D, Paucar–Chanca R, Ybañez–Julca RO, Valverde–Tamariz J, Lozano–Sullon P, Figueroa–Avalos H, Oshibanjo DO. Halquinol and nanoencapsulated essential oils: A comparative study on growth performance, intestinal morphology and meat quality in broiler chickens. Sci. Agropec. [Internet]. 2023; 14(4):435-445. doi: https://doi.org/g8x47d DOI: https://doi.org/10.17268/sci.agropecu.2023.037
Hy–Line International. Hy–Line Brown conventional systems: performance guide [Internet]. 2024 [cited 11 Aug. 2024]. Available in: https://goo.su/yBlP8J
Lee WJ, Lee MH, Su NW. Characteristics of papaya seed oils obtained by extrusion–expelling processes. J. Sci. Food Agric. [Internet]. 2011; 91(13):2348-2354. doi: https://doi.org/cgstxc DOI: https://doi.org/10.1002/jsfa.4466
Fioramonti SA, Stepanic EM, Tibaldo AM, Pavón YL, Santiago LG. Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins–alginate double layer emulsions. Food Res. Int. [Internet]. 2019; 119:931-940. doi: https://doi.org/gpvmw6 DOI: https://doi.org/10.1016/j.foodres.2018.10.079
Romero C, Arija I, Viveros A, Chamorro S. Productive performance, egg quality and yolk lipid oxidation in laying hens fed diets including grape pomace or grape extract. Animals [Internet]. 2022; 12(9):1076. doi: https://doi.org/g8x47f DOI: https://doi.org/10.3390/ani12091076
Abd El–Hack ME, El–Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El–Tahan AM, AbuQamar SF, El–Tarabily KA. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult. Sci. [Internet]. 2022; 101(2):101584. doi: https://doi.org/g8x47g DOI: https://doi.org/10.1016/j.psj.2021.101584
Xiao G, Zheng L, Yan X, Gong L, Yang Y, Qi Q, Zhang X, Zhang H. Effects of dietary essential oils supplementation on egg quality, biochemical parameters, and gut microbiota of late–laying hens. Animals [Internet]. 2022; 12(19):2561. doi: https://doi.org/g8x47h DOI: https://doi.org/10.3390/ani12192561
Siddiqui SA, Bahmid NA, Taha A, Abdel–Moneim AME, Shehata AM, Tan C, Kharazmi MS, Li Y, Assadpour E, Castro–Muñoz R, Jafari SM. Bioactive–loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv. Colloid Interface Sci. [Internet]. 2022; 308:102772. doi: https://doi.org/g8x47j DOI: https://doi.org/10.1016/j.cis.2022.102772
Abd El–Motaal AM, Ahmed AMH, Bahakaim ASA, Fathi MM. Productive performance and immunocompetence of commercial laying hens given diets supplemented with Eucalyptus. Int. J. Poult. Sci. [Internet]. 2008; 7(5):445-449. doi: https://doi.org/fvdsg5 DOI: https://doi.org/10.3923/ijps.2008.445.449
Hassan MSS, El–Sanhoury MS, , Ali WAH, Ahmed AMH. Effect of using Eucalyptus leaves as natural additives on productive, physiological, immunological and histological performance of laying Japanese quail. Egypt Poult. Sci. 2011; 31(2):305-329.
Mohebodini H, Jazi V, Ashayerizadeh A, Toghyani M, Tellez–Isaias G. Productive parameters, cecal microflora, nutrient digestibility, antioxidant status, and thigh muscle fatty acid profile in broiler chickens fed with Eucalyptus globulus essential oil. Poult. Sci. [Internet]. 2021; 100(3):100922. doi: https://doi.org/g8x47k DOI: https://doi.org/10.1016/j.psj.2020.12.020
Bozkurt M, Küçükyilmaz K, Çatli AU, Çinar M, Bintaş E, Çöven F. Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan–oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poult. Sci. [Internet]. 2012; 91(6):1379-1386. doi: https://doi.org/f3zbnv DOI: https://doi.org/10.3382/ps.2011-02023
Bozkurt M, Küçükyilmaz K, Pamukçu M, Çabuk M, Alçiçek A, Çatli AU. Long–term effects of dietary supplementation with an essential oil mixture on the growth and laying performance of two layer strains. Ital. J. Anim. Sci. [Internet]. 2012; 11(1):23-27. doi: https://doi.org/fxrwnq DOI: https://doi.org/10.4081/ijas.2012.e5
Özek K, Wellmann KT, Ertekin B, Tanm B. Effects of dietary herbal essential oil mixture and organic acid preparation on laying traits, gastrointestinal tract characteristics, blood parameters and immune response of laying hens in a hot summer season. J. Anim. Feed Sci. [Internet]. 2011; 20(4):575-586. doi: https://doi.org/f3wjk7 DOI: https://doi.org/10.22358/jafs/66216/2011
Zhai H, Liu H, Wang S, Wu J, Kluenter AM. Potential of essential oils for poultry and pigs. Anim. Nutr. [Internet]. 2018; 4(2):179-186. doi: https://doi.org/g8x47m DOI: https://doi.org/10.1016/j.aninu.2018.01.005
Khoubnasabjafari M, Ansarin K, Jouyban A. Critical review of malondialdehyde analysis in biological samples. Curr. Pharm. Anal. [Internet]. 2016; 12(1):4-17. doi: https://doi.org/g8x47n DOI: https://doi.org/10.2174/1573412911666150505185343
Luís Â, Duarte A, Gominho J, Domingues F, Duarte AP. Chemical composition, antioxidant, antibacterial and anti–quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod. [Internet]. 2016; 79:274-282. doi: https://doi.org/gnjnh2 DOI: https://doi.org/10.1016/j.indcrop.2015.10.055
Di Y, Cao A, Zhang Y, Li J, Sun Y, Geng S, Li Y, Zhang L. Effects of dietary 1,8-Cineole supplementation on growth performance, antioxidant capacity, immunity, and intestine health of broilers. Animals [Internet]. 2022; 12(18):2415. doi: https://doi.org/kmjc DOI: https://doi.org/10.3390/ani12182415
Gyesi JN, Opoku R, Borquaye LS. Chemical composition, total phenolic content, and antioxidant activities of the essential oils of the leaves and fruit pulp of Annona muricata L. (Soursop) from Ghana. Biochem. Res. Int. [Internet]. 2019; 2019(1):4164576. doi: https://doi.org/g8x47p DOI: https://doi.org/10.1155/2019/4164576
Dosoky NS, Setzer WN. Biological activities and safety of Citrus spp. Essential oils. Int. J. Mol. Sci. [Internet]. 2018; 19(7):1966. doi: https://doi.org/grh2n6 DOI: https://doi.org/10.3390/ijms19071966
Simitzis PE. Enrichment of animal diets with essential oils—a great perspective on improving animal performance and quality characteristics of the derived products. Medicines [Internet]. 2017; 4(2):35. doi: https://doi.org/g8x47q DOI: https://doi.org/10.3390/medicines4020035
Derechos de autor 2025 Gilmar Mendoza–Ordoñez, Miguel Callacná–Custodio, Vanessa Armas–Azabache, Bruno Loyaga–Cortéz, Roberto Ybañez–Julca, Daniel Asunción–Alvarez, Hugo Saavedra–Sarmiento, Aníbal Rodriguez–Vargas
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.