Efecto del hipertiroidismo inducido por L–tiroxina sobre el estrés del retículo endoplásmico testicular y el eje de señalización Nrf2/HO–1 mediado por beneficios de ratas
Resumen
El efecto de la glándula tiroides en el sistema reproductor masculino (períodos neonatal, prepuberal y adulto) se ha investigado durante muchos años. El hipertiroidismo puede causar infertilidad masculina al afectar parámetros espermatológicos como la pérdida de motilidad y la disminución de la concentración de espermatozoides. Sin embargo, los mecanismos de la infertilidad masculina causada por el hipertiroidismo aún no están completamente explicados. El objetivo de este estudio fue investigar el efecto del hipertiroidismo sobre el estrés del retículo endoplásmico testicular y la vía antioxidante mediada por PERK en ratas macho adultas. Se utilizaron 24 ratas macho adultas Sprague Dawley. Las ratas se dividieron en dos grupos: grupo control (recibió inyecciones intraperitoneales de solución salina 1 mL·día-1 durante 8 semanas) y grupo de hipertiroidismo (recibió inyecciones intraperitoneales de l–tiroxina 0,3 mg·kg-1·mL-1·día-1 durante 8 semanas). Los niveles séricos de fT3 (P<0,01) y fT4 (P<0,05) aumentaron, el nivel de TSH (P<0,01) y el peso corporal final (P<0,001) disminuyeron en los grupos de hipertiroidismo. Se determinó que los diámetros del túbulo seminífero contortus, el espesor de las células germinales y los valores de la puntuación testicular de Johnsen disminuyeron significativamente en el grupo de hipertiroidismo (P<0,001). Se determinó que tenía un efecto negativo sobre el peso de los órganos reproductivos y los parámetros espermatológicos. Según nuestros resultados, el hipertiroidismo aumentó significativamente el nivel de malondialdehído (P<0,01), el nivel de glutatión (P<0,001), la actividad de la enzima glutatión peroxidasa (P<0,001), PERK, GRP78 (P<0,01), ATF4 (P<0,05), Niveles de expresión de proteínas Nrf2, HO–1 (P<0,05) y actividad catalasa significativamente disminuida (P<0,05). Estos resultados mostraron que el aumento de los niveles de hormonas tiroideas puede ser un factor negativo en términos de fisiología testicular, ya que causa estrés en el RE en los testículos, y la respuesta antioxidante mediada por PERK puede desempeñar un papel importante en el tejido testicular en el hipertiroidismo.
Descargas
Citas
Shahid MA, Ashraf MA, Sharma S. Physiology, Thyroid Hormone [Internet]. Treasure Island (FL, USA): StatPearls Publishing; 2024 [cited 18 Jun. 2023]; 8 p. PMID 29763182. Available in: https://goo.su/UDZljk
Doubleday AR, Sippel RS. Hyperthyroidism. Gland. Surg. [Internet]. 2020; 9(1):124–135. doi: https://doi.org/grxmbf
Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: a mechanistic hypothesis. Cell Tissue Res. [Internet]. 2005; 322:133–140. doi: https://doi.org/drxcrn
Mendis–Handagama SM, Siril–Ariyaratne HB. Leydig cells, thyroid hormones and steroidogenesis. Indian J. Exp. Biol. [Internet]. 2005 [cited 18 Feb. 2024]; 43(11):939–962. PMID: 16313060. Available in: https://goo.su/iPqMq4W
Ouriquea GM, Finamor IA, Saccol EMH, Riffel APK, Pês TS, Gutierrez K, Gonçalves PBD, Baldisserotto B, Pavanato MA, Barreto KP. Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. Reprod. Toxicol. [Internet]. 2013; 37:31–39. doi: https://doi.org/g8n6xt
Asker ME, Hassan WA, El–Kashlan AM. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats. Andrologia [Internet]. 2015; 47(6):644–654. doi: https://doi.org/f7h6k3
Wajner SM, Wagner MS, Maia AL. Clinical implicationsof altered thyroid status in male testicular function. Arq. Bras. Endocrinol. Metab. [Internet]. 2009; 53(8):976–982. doi: https://doi.org/fcdf27
Krajewska–Kulak E, Sengupta P. Thyroid function in male infertility. Front. Endocrinol. [Internet]. 2013; 4(174)1–2. doi: https://doi.org/g8n6xv
Maiorino M, Ursini F. Oxidative stress, spermatogenesis and fertility. Biol. Chem. [Internet]. 2002; 38(3–4):591–597. doi: https://doi.org/bx3hmb
Venditti P, Di Meo S. Thyroid hormone–induced oxidative stress. Cell Mol. Life Sci. [Internet]. 2006; 63(4):414–434. doi: https://doi.org/c8bzfq
Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ. Oxidative stress and human spermatozoa: Diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol. Human. Rep. [Internet]. 2015; 21(6):502–515. doi: https://doi.org/f7fsws
Mogulkoc R, Baltaci AK, Oztekin E, Aydin L, Tuncer I. Hyperthyroidism causes lipid peroxidation in kidney and testis tissues of rats: Protective role of melatonin. Neuro Endocrinol. Lett. [Internet]. 2005 [cited 15 Jan. 2024]; 26(6):806–810. PMID: 16380687. Available in: https://goo.su/b9yAAL
Zamoner A, Barreto KP, Wilhelm Filho D, Sell F, Woehl VM, Guma FCR, Silva FRMB, Pessoa–Pureur R. Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Mol. Cell. Endocrinol. [Internet]. 2007; 267(1–2):116–126. doi: https://doi.org/dx2mrd
Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu. Rev. Biochem. [Internet]. 2005; 74:739–789. doi: https://doi.org/cdxq32
Karna KK, Shin YS, Choi BR, Kim HK, Park KJ. The role of endoplasmic reticulum stress response in male reproductive physiology and pathology: A review. World J. Mens. Health [Internet]. 2020; 38(4):484–494. doi: https://doi.org/gp6vnd
Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. [Internet]. 1972; 52(1):198–236. doi: https://doi.org/g8n6xw
Bancroft JD, Stevens A. Theory and practice of histological techniques. 3th ed. London: Churchill Livingstone; 1990. 744 p.
Johnsen SG. Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones [Internet]. 1970; 1(1):2–25. doi: https://doi.org/bvxfrs
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent J. Biol. Chem. [Internet]. 1951; 193(1):265–275. PMID: 14907713. doi: https://doi.org/ghv6nr
Placer ZA, Cushman LL, Johnson BC. Estimation of product of lipid peroxidation (malonly dialdehyde) in biochemical systems. Anal. Biochem. 1966; 16(2):359–364. doi: https://doi.org/b96rpj
Sedlak J, Lindsay RH. Estimation of total protein bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. [Internet] 1968; 25:192–205. doi: https://doi.org/csbsfm
Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium–deficient rat liver. Biochem. Biophys. Res. Commun. [Internet]. 1976; 71(4):952–958. doi: https://doi.org/d3vv59
Aebi H. Catalase in vitro. Methods Enzymol. [Internet]. 1984; 105:121–126. doi: https://doi.org/dnf7v9
Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ. An overview of technical considerations for Western blotting applications to physiological research. Scand. J. Med. Sci. Sports [Internet]. 2017; 27(1):4–25. doi: https://doi.org/f9knh5
Türk G, Ateşşahin A, Sönmez M, Yüce A, Çeribaşı AO. Lycopene protects against cyclosporine A–induced testicular toxicity in rats. Theriogenology [Internet]. 2007; 67(4):778–785. doi: https://doi.org/fxghnh
Shahat AS, Hassan WA, El–Sayed WM. N–Acetylcysteine and Safranal prevented the brain damage induced by hyperthyroidism in adult male rats. Nutr. Neurosci. [Internet]. 2022; 25(2):231–245. doi: https://doi.org/g8n6xx
Ireton–Jones CS. Intake: Energy. In: Mahan LK, Escott–Stump S, Raymond JL, editors. Krause’s food & the nutrition care process. 13th ed. St Louis (MO, USA): Elsevier Saunders, 2012; 19–31 p.
Bartalena L, Bogazzi F, Brogioni S, Burelli A, Scarcello G, Martino E. Measurement of serum free thyroid hormone concentrations: an essential tool for the diagnosis of thyroid dysfunction. Horm. Res. [Internet]. 1996; 45(3–5):142–147. doi: https://doi.org/ff72dx
Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: A possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology [Internet]. 1987; 121(6):2112–2118. doi: https://doi.org/d5q4kf
Huh K, Kwon TH, Kim JS, Park JM. Role of the hepatic xanthine oxidase in thyroid dysfunction: effect of thyroid hormones in oxidative stress in rat liver. Arch. Pharm. Res. [Internet]. 1998; 21:236–249. doi: https://doi.org/b8bpd8
Civelek S, Seymen O, Seven A, Yigit G, Hatemi H, Burçak G. Oxidative stress in heart tissue of hyperthyroid and iron supplemented rats. J. Toxicol. Environ. Health A. 2001; 64(6):499–506. doi: https://doi.org/bvpxc7
Sahoo DK, Roy A, Bhanja S, Chainy GBN. Experimental hyperthyroidism–induced oxidative stress and impairment of antioxidant defence system in rat testis. Indian J. Exp. Biol. [Internet]. 2005 [cited 18 Jan. 2024]; 43(11):1058–1067. PMID: 16313068. Available in: https://goo.su/z3Z23V
Sahoo DK, Roy A, Chainy GBN. Protetive effect of vitamin E and curcumin on L–thyroxine–induced rat testicular oxidative stress. Chem. Biol. Interact. [Internet]. 2008; 176(2–3):121–128. doi: https://doi.org/b3gtz7
Chattopadhyay S, Sahoo DK, Subudhi U, Chainy GBN. Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: a temporal analysis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. [Internet]. 2007; 146(3):383–391. doi: https://doi.org/crv374
Abo–Elnour RK, El–Deeb FD. A histological study on the effect of experimentally induced hyperthyroidism on adult albino rat testis. Egypt. J. Histol. [Internet]. 2012 [cited 25 Feb. 2024]; 35(4):862–871. Available en: https://goo.su/91Tnd
Özgüner M, Şenol A, Ural M, İşler M. Deneysel hipertiroidinin erişkin sıçan testis dokusunda oluşturduğu histolojik değişiklikler [Histologic changes of adult rat testis in experimental hyperthyroidism]. SDÜ. Tıp. Fak. Derg. [Internet]. 2009 [cited 18 Jan. 2024];119(4):1–6. Turkish. Available in: https://goo.su/UmUrx
Faraone–Mennella MR, Ferone A, Marino L, Cardone A, Comitato R, Venditti P, Di Meo S, Farina B. Poly(ADP–ribosyl)ation of proteins and germ cell developmentin hyperthyroid testis. Mol. Cell. Biochem. [Internet]. 2009; 323(1–2):119–129. doi: https://doi.org/bgm528
Khosrowbeygi A, Zarghami N, Deldar Y. Correlation between sperm quality parameters and seminal plasma antioxidants status. Iran J. Reprod. Med. [Internet]. 2004 [cited 20 Feb. 2024]; 2(2):58–64. Available in: https://goo.su/35DN0
Wagner MS, Wajner SM, Maia AL. The Role of thyroid hormone in testicular development and function. J. Endocrinol. [Internet]. 2008; 199(3): 351–365. doi: https://doi.org/fnjjf8
Kim JH, Park SJ, Kim TS, Park HJ, Park J, Kim BK, Kim GR, Kim JM, Huang SM, Chae J, Park CK, Lee DS. Testicular hyperthermia induces Unfolded Protein Response signaling activation in spermatocyte. Biochem Biophys. Res. Commun. [Internet]. 2013; 434(4):861–866. doi: https://doi.org/f4x3xv
Tabuchi Y, Takasaki I, Kondo T. Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells. Biochem. Biophys Res. Commun. [Internet]. 2006; 345(3):1044–1050. doi: https://doi.org/b2hqcg
Araujo AS, Fernandes T, Ribeiro MF, Khaper N, Belló–Klein A. Redox regulation of myocardial ERK 1/2 phosphorylation in experimental hyperthyroidism: role of Thioredoxin–Peroxiredoxin system. J. Cardiovasc. Pharmacol. [Internet]. 2010; 56(5):513–517. doi: https://doi.org/dnc34r
Zhao P, Hu Z, Ma W, Zang L, Tian Z, Hou Q. Quercetin alleviates hyperthyroidism–induced liver damage via Nrf2 signaling pathway. BioFactors [Internet]. 2020; 46(4):608–619. doi: https://doi.org/gm3wq3
Brunt KR, Tsuji MR, Lai JH, Kinobe RT, Durante W, Claycomb WC, Ward CA, Melo LG. Heme oxygenase–1 inhibits pro–oxidant induced hypertrophy in HL–1 cardiomyocytes. Exp. Biol. Med. [Internet]. 2009; 234(5):582–594. doi: https://doi.org/cpg8kr
Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell [Internet]. 2003; 11(3):619–633. doi: https://doi.org/bqzdfn
Bektur NE, Sahin E, Kaçar S, Bağci R, Karakaya S, Dönmez DB, Şahintürk V. Investigation of the effect of hyperthyroidism on endoplasmic reticulum stress and transient receptor potential canonical 1 channel in the kidney. Turk J. Med. Sci. [Internet]. 2021; 51(3):1554–1563. doi: https://doi.org/g8n6x2
Aykanat NEB, Sahin E, Kaçar S, Bağci R, Karakaya S, Dönmez DB, Şahintürk V. Cardiac hypertrophy caused by hyperthyroidism in rats: the role of ATF–6 and TRPC1 channels. Can. J. Physiol. Pharmacol. [Internet]. 2021; 99(11):1226–1233. doi: https://doi.org/grgnrb
Liang B, Liu LY, Huang HB, Li LY, Zhou JX. High T3 induces beta–cell insulin resistance via endoplasmic reticulum stress. Mediators Inflamm. [Internet]. 2020;2020: 5287108. doi: https://doi.org/g8n6x3
Lin JH, Li H, Zhang YH, Ron D, Walter P. Divergent Effects of PERK and IRE1 signaling on cell viability. PLos One [Internet]. 2009; 4(1):e4170. doi: https://doi.org/bd47h2
Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D, Kaufman RJ. Adaptation to ER stress is mediated by differential stabilities of pro–survival and pro–apoptotic mRNAs and proteins. PLoS Biol. [Internet]. 2006;4(11):e374. doi: https://doi.org/c3rwkc
Derechos de autor 2024 Gözde Arkalı, Şeyma Özer Kaya, Songül Çeribaşı, Edanur Güler Ekmen, Mesut Aksakal, Mehmet Çay
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.