Efectos oxidativos fisiológicos del carvedilol, un betabloqueante, en Daphnia magna

  • Engin Seker Munzur University, Pertek Sakine Genç Vocational School, Laboratory and Veterinary Health Department. Pertek, Tunceli,Türkiye
Palabras clave: Estrés oxidativo, Dafnia, carvedilol, enzimas antioxidantes, ritmo cardiaco, actividad de las extremidades torácicas, actividad de las garras postabdominales

Resumen

El carvedilol es un betabloqueante. Los betabloqueantes afectan el corazón y la circulación. El carvedilol se usa para tratar la insuficiencia cardíaca y la hipertensión. Aunque esta sustancia tiene efectos en humanos y algunos animales, se desconoce su efecto sobre el estado fisiológico y antioxidante de las dafnidas. El objetivo de este estudio fue determinar el efecto de dosis de carvedilol (0, 0,125, 0,45 y 0,90 mg·L-1) sobre las actividades fisiológicas (frecuencia cardíaca, actividad postabdominal de las patas y movimientos de las extremidades torácicas) y el estrés oxidativo. En Dafnia magna; Se examinaron los marcadores de malondialdehído (MDA), superóxido dismutasa (SOD), catalasa (CAT), glutatión total (GSH) y glutatión S transferasa (GST). Se encontró que la actividad de los parámetros fisiológicos en D. magna expuesta a todas las concentraciones de carvedilol era menor que en el grupo de control, y las diferencias fueron estadísticamente significativas (P<0,01). La aplicación de carvedilol a D. magna resultó en un menor contenido de GSH en todos los grupos durante el período experimental. Se mejoró la actividad de MDA, SOD, CAT y GST. Estos hallazgos indican que el carvedilol provoca cambios fisiológicos y bioquímicos en D. magna. Las especies de Daphnia tienen un gran potencial para proporcionar información valiosa sobre los mecanismos de la medicina humana. Se necesita una investigación más exhaustiva sobre este tema.

Descargas

La descarga de datos todavía no está disponible.

Citas

Han S, Choi K, Kim J, Ji K, Kim S, Ahn B, Yun J, Choi K, Khim JS, Zhang X, Giesy JP. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat. Toxicol. [Internet]. 2010; 98(3):256–264. doi: https://doi.org/b47q6p

Huerta B, Margiotta–Casaluci L, Rodríguez–Mozaz S, Scholze M, Winter MJ, Barceló D, Sumpter JP. Anti–anxiety drugs and fish behavior: Establishing the link between internal concentrations of oxazepam and behavioral effects. Environ. Toxicol. Chem. [Internet]. 2016; 35(11):2782–2790. doi: https://doi.org/f88zxq

Aguirre–Martínez GV, André C, Gagné F, Martín–Díaz LM. The effects of human drugs in Corbicula fluminea. Assessment of neurotoxicity, inflammation, gametogenic activity, and energy status. Ecotoxicol. Environ. Saf. [Internet]. 2018; 148:652–663. doi: https://doi.org/gdg2kn

Bownik A, Sokołowska N, Ślaska B. Effects of apomorphine, a dopamine agonist, on Daphnia magna: Imaging of swimming track density as a novel tool in the assessment of swimming activity. Sci. Total Environ. [Internet]. 2018; 635:249–258. doi: https://doi.org/gsgtnn

Huerta B, Rodriguez–Mozaz S, Lazorchak J, Barcelo D, Batt A, Wathen J, Stahl L. Presence of pharmaceuticals in fish collected from urban rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Sci. Total Environ. [Internet]. 2018; 634:542–549. doi: https://doi.org/gj3ccr

Molnar E, Maasz G, Pirger Z. Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. Environ. Sci. Pollut. Res. [Internet]. 2021; 28(42):59233–59243. doi: https://doi.org/gv885v

De Marco G, Afsa S, Galati M, Guerriero G, Mauceri A, Ben Mansour H, Cappello T. Time – and dose–dependent biological effects of sub–chronic exposure to realistic doses of salicylic acid in the gills of mussel Mytilus galloprovincialis. Environ. Sci. Pollut. Res. [Internet]. 2022 29:88161–88171. doi: https://doi.org/gv6h87

Ruffolo RR, Feuerstein GZ. carvedilol. In: Taylor JB, Triggle DJ, editors. Comprehensive Medicinal Chemistry II. Case Histories. Vol 8 [Internet]. New York: Elsevier; 2007. p.137–147. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. doi: https://doi.org/fwdw33

Areti A, Komirishetty P, Kumar A. carvedilol prevents functional deficits in peripheral nerve mitochondria of rats with oxaliplatin–evoked painful peripheral neuropathy. Toxicol. Appl. Pharmacol. [Internet]. 2017; 322:97–103. doi: https://doi.org/f94snw

Magadmi RM, Alsulaimani MA, Al–Rafiah AR, Ahmad MS, Esmat A. carvedilol exerts neuroprotective effect on rat model of diabetic neuropathy. Front. Pharmacol. [Internet]. 2021; 12:613634. doi: https://doi.org/g8ptq4

Asanuma H, Minamino T, Sanada S, Takashima S, Ogita H, Ogai A, Asakura M, Liao Y, Asano Y, Shintani Y, Kim J, Shinozaki Y, Mori H, Node K, Kitamura S, Tomoike H, Hori M, Kitakaze M. β–adrenoceptor blocker carvedilol provides cardioprotection via an adenosine–dependent mechanism in ischemic canine hearts. Circulation [Internet]. 2004; 109(22):2773–2779. doi: https://doi.org/dhxsc2

Sgobbo P, Pacelli C, Grattagliano I, Villani G, Cocco T. carvedilol inhibits mitochondrial complex I and induces resistance to H2O2–mediated oxidative insult in H9C2 myocardial cells. Biochim. Biophys. Acta Bioenergetics. [Internet]. 2007; 1767(3):222–232. doi: https://doi.org/c7pf2v

Ashton D, Hilton M, Thomas KV. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ. [Internet]. 2004; 333(1–3):167–184. doi: https://doi.org/cj8b5n

Hernando MD, Mezcua M, Fernández–Alba AR, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta [Internet]. 2006; 69(2):334–342. https://doi.org/fb5pmd

Kumar A, Xagoraraki I. Human health risk assessment of pharmaceuticals in water: An uncertainty analysis for meprobamate, carbamazepine, and phenytoin. Regul. Toxicol. Pharmacol. [Internet]. 2010; 57(2–3):146–156. doi: https://doi.org/brxwrr

Scheytt T, Mersmann P, Lindstädt R, Heberer T. Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere [Internet]. 2005; 60(2):245–253. doi: https://doi.org/cxgwv9

Deo RP, Halden RU. Pharmaceuticals in the built and natural water environment of the United States. Water [Internet]. 2013; 5(3):1346–1365. doi: https://doi.org/f5q76z

Fong PP, Ford AT. The biological effects of antidepressants on the molluscs and crustaceans: A review. Aquat. Toxicol. [Internet]. 2014; 151:4–13. doi: https://doi.org/gfsm7d

Gašo–Sokač D, Habuda–Stanić M, Bušić V, Zobundžija D. Occurence of pharmaceuticals in surface water. Croat. J. Food Sci. Technol. [Internet]. 2017; 9(2):204–210. doi: https://doi.org/gh3vst

Moreira DG, Aires A, Pereira ML, Oliveira M. Levels and effects of antidepressant drugs to aquatic organisms. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. [Internet]. 2022; 256:109322. doi: https://doi.org/g8ptq5

Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D. Toxicity of select beta–adrenergic receptor–blocking pharmaceuticals (B–blockers) on aquatic organisms. Arch. Environ. Contam. Toxicol. [Internet]. 2002; 43(2):229–235. doi: https://doi.org/cnxmtt

Cleuvers M. Initial risk assessment for three β–blockers found in the aquatic environment. Chemosphere [Internet]. 2005; 59(2):199–205. doi: https://doi.org/bzb5qh

Fraysse B, Garric J. Prediction and experimental validation of acute toxicity of β–blocks in Ceriodaphnia dubia. Environ. Toxicol. Chem. [Internet]. 2005; 24(10):2470–2476. doi: https://doi.org/b64gd5

Dzialowski EM, Turner PK, Brooks BW. Physiological and reproductive effects of Beta adrenergic receptor antagonists in Daphnia magna Arch. Environ. Contam. Toxicol. [Internet]. 2006; 50(4):503–510. doi: https://doi.org/fg3tsh

Larsson DGJ, Fredriksson S, Sandblom E, Paxeus N, Axelsson M. Is heart rate in fish a sensitive indicator to evaluate the acute effects of β–blockers in surface water? Environ. Toxicol. Pharmacol. [Internet]. 2006; 22(3):338–340. doi: https://doi.org/fmpd98

Owen SF, Huggett DB, Hutchinson TH, Hetheridge MJ, Kinter LB, Ericson JF, Sumpter JP. Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquat. Toxicol. [Internet]. 2009; 93(4):217–224. doi: https://doi.org/fq4b44

Contardo–Jara V, Pflugmacher S, Nützmann G, Kloas W, Wiegand C. The β–receptor blocker metoprolol alters detoxification processes in the non–target organism Dreissena polymorpha. Environ. Pollut. [Internet]. 2010; 158(6):2059–2066. doi: https://doi.org/fnn3hh

Franzellitti S, Buratti, S, Valbonesi P, Capuzzo A, Fabbri E. The β–blocker propranolol affects cAMP–dependent signaling and induces the stress response in Mediterranean mussels, Mytilus galloprovincialis. Aquat. Toxicol. [Internet]. 2011; 101(2):299–308. doi: https://doi.org/c3wfs8

Sumpter JP, Runnalls TJ, Donnachie RL, Owen SF. A comprehensive aquatic risk assessment of the beta–blocker propranolol, based on the results of over 600 research papers. Sci. Total. Environ. [Internet]. 2021; 793:148617. doi: https://doi.org/gmzsj9

De Baat ML, Kraak MHS, Van der Oost R, De Voogt P, Verdonschot PFM. Effect–based nationwide surface water quality assessment to identify ecotoxicological risks. Water Res. [Internet]. 2019; 159:434–443. doi: https://doi.org/gwdqgc

Rodrigues S, Pinto I, Martins F, Formigo N, Antunes SC . Can biochemical endpoints improve the sensitivity of the biomonitoring strategy using bioassays with standard species, for water quality evaluation? Ecotoxicol. Environ. Saf. [Internet]. 2021;215:112151. doi: https://doi.org/gv9z9v

Roig N, Sierra J, Nadal M, Moreno–Garrido I, Nieto E, Hampel, Perez Gallego E, Schuhmacher M, Blasco J. Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study. Sci. Total. Environ. [Internet]. 2015; 503–504:269–278. doi: https://doi.org/gwfvgq

Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J. Nanobiotechnology. [Internet]. 2012, 10:14. doi: https://doi.org/gkth2c

Shaw JR, Pfrender ME, Eads BD, Klaper R, Callaghan A, Sibly RM, Colson I, Jansen B, Gilbert D, Colbourne JK. Daphnia as an emerging model for toxicological genomics. In: Hogstrand C, Kille P, editors. Comparative Toxicogenomics. Vol. 2. [Internet]. Oxford (UK): Elsevier Science; 2008; p.165–219. Advances in Experimental Biology Series. doi: https://doi.org/dfzsw2

Villegas–Navarro A, Rosas–L E, Reyes JL. The heart Daphnia magna: effects of four cardioactive drugs. Comp. Biochem. Physiol. C Toxicol. Pharmacol. [Internet]. 2003; 136(2):127–134. doi: https://doi.org/fv5wh2

Campbell AK, Wann KT, Matthews SB. Lactose causes heart arrhythmia in the water flea Daphnia pulex. Comp. Biochem. Physiol. B Biochem. Mol. Biol. [Internet]. 2004; 139(2):225–234. doi: https://doi.org/djqm5d

Nakamura K, Murakami M, Miura D, Yunoki K, Enko K, Tanaka M, Saito Y, Nishii N, Miyoshi T, Yoshida M, Oe H, Toh N, Nagase S, Kohno K, Morita H, Matsubara H, Kusano KF, Ohe T, Ito H. Beta–blockers and oxidative stress in patients with heart failure. Pharmaceuticals [Internet]. 2011; 4(8):1088–1100. doi: https://doi.org/b863st

López–Mancisidor P, Carbonell G, Marina A, Fernández C, Tarazona JV. Zooplankton community responses to chlorpyrifos in mesocosms under Mediterranean conditions. Ecotoxicol. Environ. Saf. [Internet]. 2008; 71(1):16–25. doi: https://doi.org/bdrm3j

Liu H, Yuan B, Li S. Altered quantities and in vivo activities of cholinesterase from Daphnia magna in sub–lethal exposure to organophosphorus insecticides. Ecotoxicol. Environ. Saf. [Internet]. 2012; 80:118–125. doi: https://doi.org/f3xnkt

Kingsbury JW, Hartman KJ. The potential impacts of statins and beta–blockers on West Virginia ichthyofauna. Water [Internet]. 2023; 15(20):3536. doi: https://doi.org/g8ptq6

van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. [Internet]. 2003; 13(2):57–149. doi: https://doi.org/fg9h22

Placer ZA, Cushman LL, Johnson BC. Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological systems. Anal. Biochem. [Internet]. 1966; 16(2):359–364. https://doi.org/b96rpj

Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988; 34(3):497–500. PMID: 3349599

Aebi H. Catalase in vitro. Methods Enzymol. [Internet]. 1984; 105:121–126. doi: https://doi.org/dnf7v9

Ellman GL. Tissue sulphydryl groups. Arch. Biochem. Biophys. [Internet]. 1959; 82(1):70–77. doi: https://doi.org/bz2vt8

Habig WH, Pabst MJ, Jakoby WB. Glutathione S–transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. [Internet].1974 [15 Apr. 2024]; 249(22):7130–7139. PMID: 4436300. Available in: https://goo.su/PXzUlv6

Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano–C60, and C60HxC70Hx). Environ. Sci. Technol. [Internet]. 2007; 41(12):4465–4470. doi: https://doi.org/djx8f4

Luo T, Chen J, Song B, Ma H, Fu Z, Peijnenburg WJ. Time–gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. Aquat. Toxic. [Internet]. 2017; 191:105–112. doi: https://doi.org/gb2q4m

Bekker JM, Krijgsman BJ. Physiological investigations into the heart function of Daphnia. J. Physiol. [Internet]. 1951; 115(3):249–257. doi: https://doi.org/g8ptq7

Jeong TY, Yoon D, Kim S, Kim HY, Kim SD. Mode of action characterization for adverse effect of propranolol in Daphnia magna based on behavior and physiology monitoring and metabolite profiling. Environ. Pollut. [Internet]. 2018; 233:99–108. doi: https://doi.org/gczrpj

Postmes TJ, Prick R, Borens I. The deceleration of the heart frequency in the water flea Daphnia magna by adrenoceptor agonists and antagonists. Hydrobiologia [Internet]. 1989; 171:141–148. doi: https://doi.org/bssk89

Steinkey D, Lari E, Woodman SG, Steinkey R, Luong KH, Wong CS, Pyle GG. The effects of diltiazem on growth, reproduction, energy reserves, and calcium–dependent physiology in Daphnia magna. Chemosphere [Internet]. 2019; 232:424–429. doi: https://doi.org/gnmjd5

Pirow R, Wollinger F, Paul RJ. The importance of the feeding current for oxygen uptake in the water flea Daphnia magna. J. Exp. Biol. [Internet]. 1999; 202(5):553–562. doi: https://doi.org/g8ptq8

Vietti DE. Chemistry of Malondialdehyde [dissertation] [Iowa City]:The University of Iowa; 1980.154 p.

Gutteridge JMC, Halliwell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. [Internet]. 1990; 15(4):129–135. doi: https://doi.org/bd88m7

Nkoom M, Lu G, Liu J, Dong H, Yang H. Bioconcentration, behavioral, and biochemical effects of the non–steroidal anti–inflammatory drug diclofenac in Daphnia magna. Environ. Sci. Pollut. Res. [Internet]. 2019; 26(6):5704–5712. doi: https://doi.org/gdbh

De Felice B, Mondellini S, Salgueiro–González N, Castiglioni S, Parolini M. Methamphetamine exposure modulated oxidative status and altered the reproductive output in Daphnia magna. Sci. Total. Environ. [Internet]. 2020; 721:137728. doi: https://doi.org/gsb2f2

Oliveira LL, Antunes SC, Gonçalves F, Rocha O, Nunes B. Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol. Environ. Saf. [Internet]. 2015; 119:123–131. doi: https://doi.org/f7hjcq

Solé M, Shaw JP, Frickers PE, Readman JW, Hutchinson TH. Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal. Bioanal. Chem. [Internet]. 2010; 396(2):649– 656. doi: https://doi.org/ctbn6c

Asayama K, Dobashi K, Hayashibe H, Kato K. Effects of beta–adrenergic blockers with different ancillary properties on lipid peroxidation in hyperthyroid rat cardiac muscle. Endocrinol. Jpn. [Internet]. 1989; 36(5):687–694. doi: https://doi.org/df6ggx

Benhar M. Oxidants, antioxidants, and thiol redox switches in the control of regulated cell death pathways. Antioxidants [Internet]. 2020; 9(4):309. doi: https://doi.org/gps3z7

Tualeka AR, Martiana T, Ahsan A, Russeng SS, Meidikayanti W. Association between malondialdehyde and glutathione (L–gamma–Glutamyl–Cysteinyl–Glycine/GSH) levels on workers exposed to benzene in Indonesia. Open Access Maced. J. Med. Sci. [Internet]. 2019; 7(7):1198–1202. doi: https://doi.org/g8ptq9

Coles B, Ketterer B, Hinson JA. The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit. Rev. Biochem. Mol. Biol. [Internet]. 1990; 25(1):47–70. doi: https://doi.org/bw6d84

Quinn B, Schmidt W, O’Rourke K, Hernan R. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere [Internet]. 2011; 84(5):657–663. doi: https://doi.org/cf5n6s

Schmidt W, Rainville LC, McEneff G, Sheehan D, Quinn B. A proteomice valuation of the effects of the pharmaceuticals diclofenac and gemfibrozilon marine mussels (Mytilus spp.): evidence for chronic sublethal effects on stress–response proteins. Drug Test. Anal. [Internet]. 2014; 6(3):210–219. doi: https://doi.org/g8ptrb

Publicado
2024-11-03
Cómo citar
1.
Seker E. Efectos oxidativos fisiológicos del carvedilol, un betabloqueante, en Daphnia magna. Rev. Cient. FCV-LUZ [Internet]. 3 de noviembre de 2024 [citado 9 de diciembre de 2024];34(3):9. Disponible en: https://produccioncientificaluz.org/index.php/cientifica/article/view/42893
Sección
Medicina Veterinaria